Files
FastDeploy/tests/quantization/test_w4afp8.py
Echo-Nie ff653503ff [Docs] Add License in Unittest (#4957)
* add copyright

* add CopyRight
2025-11-12 10:44:09 +08:00

159 lines
5.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest import mock
from fastdeploy.model_executor.layers.moe import FusedMoE
from fastdeploy.model_executor.layers.quantization.w4afp8 import (
QUANT_SCALING_FACTOR,
W4AFP8Config,
W4AFP8LinearMethod,
)
class TestW4AFP8(unittest.TestCase):
def setUp(self):
self.config = W4AFP8Config(
weight_scale_dict={"layer.weight_scale": 1.0},
act_scale_dict={"layer.activation_scale": 1.0},
is_permuted=False,
hadamard_block_size=128,
)
self.method = W4AFP8LinearMethod(self.config)
# Mock layer
self.layer = mock.Mock()
self.layer.weight_shape = [8, 4]
self.layer.create_parameter.return_value = "created_weight"
self.layer.bias = "bias"
self.layer.add_bias = True
self.layer._dtype = "float16"
self.layer.prefix = "layer"
def test_name(self):
self.assertEqual(self.config.name(), "w4afp8")
def test_from_config_defaults(self):
cfg = W4AFP8Config.from_config({})
self.assertTrue(cfg.is_permuted)
self.assertEqual(cfg.hadamard_block_size, 128)
def test_from_config_full(self):
cfg = W4AFP8Config.from_config(
{
"weight_scale_dict": {"a": 1},
"act_scale_dict": {"b": 2},
"is_permuted": False,
"hadamard_block_size": 64,
}
)
self.assertEqual(cfg.weight_scale_dict["a"], 1)
self.assertEqual(cfg.hadamard_block_size, 64)
self.assertFalse(cfg.is_permuted)
def test_get_quant_method_linear(self):
# Non-FusedMoE path
method = self.config.get_quant_method(mock.Mock())
self.assertIsInstance(method, W4AFP8LinearMethod)
@mock.patch("fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend.CutlassW4AFP8MoEMethod")
def test_get_quant_method_moe(self, mock_cutlass):
# Mock FusedMoE instance
layer = mock.Mock(spec=FusedMoE)
type(layer).return_value = None
result = self.config.get_quant_method(layer)
mock_cutlass.assert_called_once_with(self.config)
self.assertEqual(result, mock_cutlass.return_value)
def test_create_weights(self):
original_shape = [8, 4]
self.layer.weight_shape = original_shape.copy()
self.method.create_weights(self.layer)
self.assertEqual(self.layer.weight_dtype, "int8")
self.assertEqual(self.layer.weight, "created_weight")
self.assertEqual(self.layer.weight_shape, [2, 8])
@mock.patch("fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16_weight_quantize")
@mock.patch("paddle.view")
@mock.patch("paddle.cast")
def test_process_loaded_weights(self, mock_cast, mock_view, mock_quant):
mock_cast.return_value.cpu.return_value = "cpu_tensor"
mock_quant.return_value = ("quanted_weight", "weight_scale")
mock_view.return_value = "reshaped_scale"
self.layer.weight = mock.Mock()
self.layer.weight_scale = mock.Mock()
self.method.process_loaded_weights(self.layer, "weights")
mock_cast.assert_called_once_with("weights", "float32")
mock_quant.assert_called_once()
mock_view.assert_called_once_with("weight_scale", self.layer._dtype)
self.layer.weight.set_value.assert_called_once_with("quanted_weight")
self.layer.weight_scale.set_value.assert_called_once_with("reshaped_scale")
@mock.patch("fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16_weight_quantize")
@mock.patch("paddle.view")
@mock.patch("paddle.cast")
def test_process_loaded_weights_with_error(self, mock_cast, mock_view, mock_quant):
mock_cast.return_value.cpu.return_value = "cpu_tensor"
mock_quant.return_value = (None, None)
self.layer.weight = mock.Mock()
self.layer.weight_scale = mock.Mock()
self.method.process_loaded_weights(self.layer, "weights")
@mock.patch("fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16")
def test_apply_with_bias(self, mock_gemm):
mock_gemm.return_value = "output"
x = mock.Mock()
self.layer.weight = "w"
self.layer.weight_scale = "s"
result = self.method.apply(self.layer, x)
mock_gemm.assert_called_once()
self.assertEqual(result, "output")
# Verify out_scale value
call_args = mock_gemm.call_args.kwargs
expected_out_scale = 1.0 / (1.0 * QUANT_SCALING_FACTOR * QUANT_SCALING_FACTOR)
self.assertAlmostEqual(call_args["out_scale"], expected_out_scale)
@mock.patch("fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16")
def test_apply_without_bias(self, mock_gemm):
self.layer.add_bias = False
mock_gemm.return_value = "out"
x = "x"
result = self.method.apply(self.layer, x)
self.assertEqual(result, "out")
args = mock_gemm.call_args.kwargs
self.assertIsNone(args["bias"])
@mock.patch("fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16")
def test_apply_prefix_missing_key(self, mock_gemm):
self.layer.prefix = "unknown"
x = mock.Mock()
with self.assertRaises(TypeError):
self.method.apply(self.layer, x)
if __name__ == "__main__":
unittest.main()