mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
183 lines
6.3 KiB
Python
183 lines
6.3 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.device.cuda.graphs as graphs
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
LoadConfig,
|
|
ModelConfig,
|
|
ParallelConfig,
|
|
)
|
|
from fastdeploy.model_executor.layers.quantization.block_wise_fp8 import (
|
|
BlockWiseFP8Config,
|
|
)
|
|
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_MLP
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
from fastdeploy.worker.worker_process import init_distributed_environment
|
|
|
|
paddle.set_default_dtype("bfloat16")
|
|
if "nvidia graphics device" in paddle.device.cuda.get_device_name().lower():
|
|
# (ZKK): CI machine.
|
|
os.environ.setdefault("DG_NVCC_OVERRIDE_CPP_STANDARD", "17")
|
|
|
|
|
|
class FFNWrapper(paddle.nn.Layer):
|
|
def __init__(self, model_config: ModelConfig):
|
|
super().__init__()
|
|
self.model_config = model_config
|
|
|
|
self.intermediate_size = self.model_config.intermediate_size
|
|
self.hidden_size = self.model_config.hidden_size
|
|
self.prefix = "hahahha"
|
|
self.fd_config = FDConfig(
|
|
model_config=self.model_config,
|
|
parallel_config=ParallelConfig(
|
|
{
|
|
"tensor_parallel_size": 1,
|
|
"expert_parallel_size": 1,
|
|
"expert_parallel_rank": 0,
|
|
"data_parallel_size": 1,
|
|
}
|
|
),
|
|
quant_config=BlockWiseFP8Config(weight_block_size=[128, 128]),
|
|
# quant_config = WINT8Config({}),
|
|
scheduler_config=SchedulerConfig({}),
|
|
cache_config=CacheConfig({}),
|
|
graph_opt_config=GraphOptimizationConfig({}),
|
|
load_config=LoadConfig({}),
|
|
ips="0.0.0.0",
|
|
)
|
|
self.fd_config.parallel_config.tp_group = None
|
|
self.fd_config.parallel_config.tensor_parallel_rank = 0
|
|
self.fd_config.parallel_config.tensor_parallel_size = 1
|
|
|
|
self.ffn = Ernie4_5_MLP(
|
|
fd_config=self.fd_config,
|
|
intermediate_size=self.intermediate_size,
|
|
prefix=self.prefix,
|
|
)
|
|
|
|
up_gate_proj_weight_shape = [self.hidden_size, self.intermediate_size * 2]
|
|
down_proj_weight_shape = [self.intermediate_size, self.hidden_size]
|
|
|
|
up_gate_proj_weight = paddle.randn(up_gate_proj_weight_shape, paddle.bfloat16)
|
|
down_proj_weight = paddle.randn(down_proj_weight_shape, paddle.bfloat16)
|
|
|
|
state_dict = {
|
|
f"{self.prefix}.up_gate_proj.weight": up_gate_proj_weight,
|
|
f"{self.prefix}.down_proj.weight": down_proj_weight,
|
|
}
|
|
|
|
self.ffn.load_state_dict(state_dict)
|
|
|
|
|
|
class TestFusedMoE(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
self.architectures = ["Ernie4_5_MoeForCausalLM"]
|
|
self.hidden_size = 4096
|
|
self.intermediate_size = 2048
|
|
self.num_layers = 1
|
|
self.hidden_act = "silu"
|
|
self.num_attention_heads = 64
|
|
self.model_config = self.build_model_config()
|
|
|
|
def build_model_config(self) -> ModelConfig:
|
|
model_name_or_path = self.build_config_json()
|
|
return ModelConfig(
|
|
{
|
|
"model": model_name_or_path,
|
|
"max_model_len": 2048,
|
|
}
|
|
)
|
|
|
|
def build_config_json(self) -> str:
|
|
config_dict = {
|
|
"architectures": self.architectures,
|
|
"hidden_size": self.hidden_size,
|
|
"intermediate_size": self.intermediate_size,
|
|
"hidden_act": self.hidden_act,
|
|
"num_attention_heads": self.num_attention_heads,
|
|
"dtype": "bfloat16",
|
|
}
|
|
|
|
tmp_dir = f"./tmpefef{paddle.distributed.get_rank()}"
|
|
os.makedirs(tmp_dir, exist_ok=True)
|
|
with open(f"./{tmp_dir}/config.json", "w") as f:
|
|
json.dump(config_dict, f)
|
|
self.model_name_or_path = os.path.join(os.getcwd(), tmp_dir)
|
|
return self.model_name_or_path
|
|
|
|
def test_ffn(self):
|
|
init_distributed_environment()
|
|
|
|
ffn = FFNWrapper(self.model_config)
|
|
|
|
moe_cuda_graphs = [None] * 100
|
|
cache_hidden_states = [None] * 100
|
|
test_token_nums = [10, 20, 40, 60, 80, 100, 128, 160, 192, 256, 4096, 4096 * 4]
|
|
for idx, num_tokens in enumerate(test_token_nums):
|
|
|
|
cache_hidden_states[idx] = paddle.rand((num_tokens, self.model_config.hidden_size), dtype=paddle.bfloat16)
|
|
|
|
moe_cuda_graphs[idx] = graphs.CUDAGraph()
|
|
moe_cuda_graphs[idx].capture_begin()
|
|
|
|
num_layers = self.num_layers
|
|
for _ in range(num_layers):
|
|
out = ffn.ffn(cache_hidden_states[idx])
|
|
|
|
moe_cuda_graphs[idx].capture_end()
|
|
|
|
num_tests = 20
|
|
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
|
|
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
|
|
for i in range(num_tests):
|
|
start_events[i].record()
|
|
|
|
moe_cuda_graphs[idx].replay()
|
|
|
|
end_events[i].record()
|
|
paddle.device.cuda.synchronize()
|
|
|
|
times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
|
|
print("num_tokens:", num_tokens)
|
|
print(times[-5:])
|
|
|
|
flops = num_layers * 2 * num_tokens * self.model_config.hidden_size * ffn.intermediate_size * 3
|
|
memory = num_layers * self.model_config.hidden_size * ffn.intermediate_size * 3
|
|
# memory += (num_layers * num_tokens * ffn.intermediate_size * 2)
|
|
|
|
print(round(flops / times[-1] / (1024**3), 1), "TFLOPS")
|
|
|
|
print(round(memory / times[-1] / (1024**3), 1), "TB/s")
|
|
|
|
shutil.rmtree(self.model_name_or_path)
|
|
return out
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|