mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			162 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/backends/paddle/paddle_backend.h"
 | |
| #include "fastdeploy/core/float16.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device) {
 | |
|   if (device == Device::GPU) {
 | |
|     return paddle_infer::PlaceType::kGPU;
 | |
|   }
 | |
|   return paddle_infer::PlaceType::kCPU;
 | |
| }
 | |
| 
 | |
| void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor,
 | |
|                              FDTensor& fd_tensor) {
 | |
|   std::vector<int> shape(fd_tensor.shape.begin(), fd_tensor.shape.end());
 | |
|   tensor->Reshape(shape);
 | |
|   auto place = ConvertFDDeviceToPlace(fd_tensor.device);
 | |
|   if (fd_tensor.dtype == FDDataType::FP32) {
 | |
|     if (place == paddle_infer::PlaceType::kGPU) {
 | |
|        tensor->ShareExternalData(static_cast<const float*>(fd_tensor.Data()),
 | |
|                               shape, place);
 | |
|     } else {
 | |
|       tensor->CopyFromCpu(static_cast<const float*>(fd_tensor.Data()));
 | |
|     }
 | |
|     return;
 | |
|   } else if (fd_tensor.dtype == FDDataType::INT32) {
 | |
|     if (place == paddle_infer::PlaceType::kGPU) {
 | |
|        tensor->ShareExternalData(static_cast<const int32_t*>(fd_tensor.Data()),
 | |
|                               shape, place);
 | |
|     } else {
 | |
|       tensor->CopyFromCpu(static_cast<const int32_t*>(fd_tensor.Data()));
 | |
|     }
 | |
|     return;
 | |
|   } else if (fd_tensor.dtype == FDDataType::INT64) {
 | |
|     if (place == paddle_infer::PlaceType::kGPU) {
 | |
|        tensor->ShareExternalData(static_cast<const int64_t*>(fd_tensor.Data()),
 | |
|                               shape, place);
 | |
|     } else {
 | |
|       tensor->CopyFromCpu(static_cast<const int64_t*>(fd_tensor.Data()));
 | |
|     }
 | |
|     return;
 | |
|   } else if (fd_tensor.dtype == FDDataType::UINT8) {
 | |
|     tensor->ShareExternalData(static_cast<const uint8_t*>(fd_tensor.Data()),
 | |
|                               shape, paddle_infer::PlaceType::kCPU);
 | |
|     return;
 | |
|   }
 | |
|   FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
 | |
|            Str(fd_tensor.dtype).c_str());
 | |
| }
 | |
| 
 | |
| void PaddleTensorToFDTensor(std::unique_ptr<paddle_infer::Tensor>& tensor,
 | |
|                             FDTensor* fd_tensor,
 | |
|                             bool copy_to_fd) {
 | |
|   auto fd_dtype = PaddleDataTypeToFD(tensor->type());
 | |
|   std::vector<int64_t> shape;
 | |
|   auto tmp_shape = tensor->shape();
 | |
|   shape.assign(tmp_shape.begin(), tmp_shape.end());
 | |
|   if(copy_to_fd) {
 | |
|     fd_tensor->Resize(shape, fd_dtype, tensor->name());
 | |
|     if (fd_tensor->dtype == FDDataType::FP32) {
 | |
|       tensor->CopyToCpu(static_cast<float*>(fd_tensor->MutableData()));
 | |
|       return;
 | |
|     } else if (fd_tensor->dtype == FDDataType::INT32) {
 | |
|       tensor->CopyToCpu(static_cast<int32_t*>(fd_tensor->MutableData()));
 | |
|       return;
 | |
|     } else if (fd_tensor->dtype == FDDataType::INT64) {
 | |
|       tensor->CopyToCpu(static_cast<int64_t*>(fd_tensor->MutableData()));
 | |
|       return;
 | |
|     } 
 | |
|     FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
 | |
|             Str(fd_tensor->dtype).c_str());
 | |
|   } else {
 | |
|     paddle_infer::PlaceType place;
 | |
|     int size = 0;
 | |
|     // TODO(liqi): The tensor->data interface of paddle don't return device id
 | |
|     //               and don't support return void*.
 | |
|     void* out_data = nullptr;
 | |
|     if (fd_dtype == FDDataType::FP32) {
 | |
|       out_data = tensor->data<float>(&place, &size);
 | |
|     } else if (fd_dtype == FDDataType::INT32) {
 | |
|       out_data = tensor->data<int>(&place, &size);
 | |
|     } else if (fd_dtype == FDDataType::INT64) {
 | |
|       out_data = tensor->data<int64_t>(&place, &size);
 | |
|     } else if (fd_dtype == FDDataType::INT8) {
 | |
|       out_data = tensor->data<int8_t>(&place, &size);
 | |
|     } else if (fd_dtype == FDDataType::UINT8) {
 | |
|       out_data = tensor->data<uint8_t>(&place, &size);
 | |
|     } else {
 | |
|       FDASSERT(false, "Unexpected data type(%s) while infer shared with PaddleBackend.",
 | |
|           Str(fd_dtype).c_str());
 | |
|     }
 | |
|     Device device = Device::CPU;
 | |
|     if(place == paddle_infer::PlaceType::kGPU) {
 | |
|       device = Device::GPU;
 | |
|     }
 | |
|     fd_tensor->name = tensor->name();
 | |
|     fd_tensor->SetExternalData(
 | |
|         shape, fd_dtype,
 | |
|         out_data, device);
 | |
|   }
 | |
| }
 | |
| 
 | |
| FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype) {
 | |
|   auto fd_dtype = FDDataType::FP32;
 | |
|   if (dtype == paddle_infer::FLOAT32) {
 | |
|     fd_dtype = FDDataType::FP32;
 | |
|   } else if (dtype == paddle_infer::INT64) {
 | |
|     fd_dtype = FDDataType::INT64;
 | |
|   } else if (dtype == paddle_infer::INT32) {
 | |
|     fd_dtype = FDDataType::INT32;
 | |
|   } else if (dtype == paddle_infer::UINT8) {
 | |
|     fd_dtype = FDDataType::UINT8;
 | |
|   } else if (dtype == paddle_infer::INT8) {
 | |
|     fd_dtype = FDDataType::INT8;
 | |
|   } else if (dtype == paddle_infer::FLOAT16) {
 | |
|     fd_dtype = FDDataType::FP16;
 | |
|   } else {
 | |
|     FDASSERT(
 | |
|         false,
 | |
|         "Unexpected data type: %d while call CopyTensorToCpu in PaddleBackend.",
 | |
|         int(dtype));
 | |
|   }
 | |
|   return fd_dtype;
 | |
| }
 | |
| 
 | |
| FDDataType ReaderDataTypeToFD(int32_t dtype) {
 | |
|   auto fd_dtype = FDDataType::FP32;
 | |
|   if (dtype == 0) {
 | |
|     fd_dtype = FDDataType::FP32;
 | |
|   } else if (dtype == 1) {
 | |
|     fd_dtype = FDDataType::FP64;
 | |
|   } else if (dtype == 2) {
 | |
|     fd_dtype = FDDataType::UINT8;
 | |
|   } else if (dtype == 3) {
 | |
|     fd_dtype = FDDataType::INT8;
 | |
|   } else if (dtype == 4) {
 | |
|     fd_dtype = FDDataType::INT32;
 | |
|   } else if (dtype == 5) {
 | |
|     fd_dtype = FDDataType::INT64;
 | |
|   } else if (dtype == 6) {
 | |
|     fd_dtype = FDDataType::FP16;
 | |
|   } else {
 | |
|     FDASSERT(false, "Unexpected data type: %d while call ReaderDataTypeToFD in PaddleBackend.", dtype);
 | |
|   }
 | |
|   return fd_dtype;
 | |
| }
 | |
| 
 | |
| }  // namespace fastdeploy
 | 
