mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 d339df2e90
			
		
	
	d339df2e90
	
	
	
		
			
			* Support DP+TP+EP hybrid parallel deployment strategy * Support DP+TP+EP hybrid parallel deployment strategy * fix conflict * add moe_tp_ep function split_allgather_out * del tp_group in moe_cutlass_backend * for ci * fix parallel_config for ci * del log
		
			
				
	
	
		
			161 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "save_with_output_msg.h"
 | |
| 
 | |
| void save_kernel(const paddle::Tensor& x,
 | |
|                  const paddle::Tensor& not_need_stop,
 | |
|                  int64_t rank_id,
 | |
|                  int msg_queue_id,
 | |
|                  bool save_each_rank) {
 | |
| 
 | |
|     const int64_t* x_data = x.data<int64_t>();
 | |
|     static struct msgdata msg_sed;
 | |
| 
 | |
|     if (const char* inference_msg_queue_id_env_p =
 | |
|             std::getenv("INFERENCE_MSG_QUEUE_ID")) {
 | |
|         std::string inference_msg_queue_id_env_str(
 | |
|             inference_msg_queue_id_env_p);
 | |
|         int inference_msg_queue_id_from_env =
 | |
|             std::stoi(inference_msg_queue_id_env_str);
 | |
|         msg_queue_id = inference_msg_queue_id_from_env;
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
 | |
|                   << inference_msg_queue_id_from_env << std::endl;
 | |
| #endif
 | |
|     } else {
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
 | |
|                   << std::endl;
 | |
| #endif
 | |
|     }
 | |
|     int inference_msg_id_from_env = 1;
 | |
|     if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
 | |
|         std::string inference_msg_id_env_str(inference_msg_id_env_p);
 | |
|         inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
 | |
|         if (inference_msg_id_from_env == 2) {
 | |
|             // 2 and -2 is perserve for no-output indication.
 | |
|             throw std::runtime_error(
 | |
|                 " INFERENCE_MSG_ID cannot be 2, please use other number.");
 | |
|         }
 | |
|         if (inference_msg_id_from_env < 0) {
 | |
|             throw std::runtime_error(
 | |
|                 " INFERENCE_MSG_ID cannot be negative, please use other "
 | |
|                 "number.");
 | |
|         }
 | |
| 
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Your INFERENCE_MSG_ID is: " << inference_msg_id_from_env
 | |
|                   << std::endl;
 | |
| #endif
 | |
|     } else {
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout
 | |
|             << "Failed to got INFERENCE_MSG_ID at env, use (int)1 as default."
 | |
|             << std::endl;
 | |
| #endif
 | |
|     }
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "msg_queue_id is: "
 | |
|                   << msg_queue_id << std::endl;
 | |
| #endif
 | |
|     static key_t key = ftok("/dev/shm", msg_queue_id);
 | |
| 
 | |
|     static int msgid = msgget(key, IPC_CREAT | 0666);
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|     std::cout << "save_output_key: " << key << std::endl;
 | |
|     std::cout << "save msgid: " << msgid << std::endl;
 | |
| #endif
 | |
|     msg_sed.mtype = 1;
 | |
|     bool not_need_stop_data = not_need_stop.data<bool>()[0];
 | |
|     // printf("not_need_stop_data %d\n", (int)not_need_stop_data);
 | |
|     msg_sed.mtext[0] = not_need_stop_data ? inference_msg_id_from_env
 | |
|                                           : -inference_msg_id_from_env;
 | |
|     int bsz = x.shape()[0];
 | |
|     msg_sed.mtext[1] = bsz;
 | |
|     for (int i = 2; i < bsz + 2; i++) {
 | |
|         msg_sed.mtext[i] = (int)x_data[i - 2];
 | |
|     }
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|     std::cout << "msg data: ";
 | |
|     for (int i = 0; i < bsz; i++) {
 | |
|         std::cout << " " << (int)x_data[i];
 | |
|     }
 | |
|     std::cout << std::endl;
 | |
| #endif
 | |
|     if ((msgsnd(msgid, &msg_sed, (MAX_BSZ + 2) * 4, 0)) == -1) {
 | |
|         printf("full msg buffer\n");
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| void SaveOutMmsg(const paddle::Tensor& x,
 | |
|                  const paddle::Tensor& not_need_stop,
 | |
|                  int64_t rank_id,
 | |
|                  int msg_queue_id,
 | |
|                  bool save_each_rank) {
 | |
|     // don't use save_each_rank now!
 | |
|     if (rank_id > 0) {
 | |
|         return;
 | |
|     }
 | |
|     if (x.place() == paddle::CPUPlace()) {
 | |
|         save_kernel(
 | |
|             x,
 | |
|             not_need_stop,
 | |
|             rank_id,
 | |
|             msg_queue_id,
 | |
|             save_each_rank
 | |
|         );
 | |
|     } else {
 | |
|         auto x_cpu = x.copy_to(paddle::CPUPlace(), false);
 | |
|         save_kernel(
 | |
|             x_cpu,
 | |
|             not_need_stop,
 | |
|             rank_id,
 | |
|             msg_queue_id,
 | |
|             save_each_rank
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SaveOutMmsgStatic(const paddle::Tensor& x,
 | |
|                        const paddle::Tensor& not_need_stop,
 | |
|                        int64_t rank_id,
 | |
|                        bool save_each_rank) {
 | |
|     SaveOutMmsg(x, not_need_stop, rank_id, 1, save_each_rank);
 | |
| }
 | |
| 
 | |
| void SaveOutMmsgDynamic(const paddle::Tensor& x,
 | |
|                         const paddle::Tensor& not_need_stop,
 | |
|                         int64_t rank_id,
 | |
|                         int msg_queue_id,
 | |
|                         bool save_each_rank) {
 | |
|     SaveOutMmsg(x, not_need_stop, rank_id, msg_queue_id, save_each_rank);
 | |
| }
 | |
| 
 | |
| PD_BUILD_STATIC_OP(save_output)
 | |
|     .Inputs({"x", "not_need_stop"})
 | |
|     .Attrs({"rank_id: int64_t",
 | |
|             "save_each_rank: bool"})
 | |
|     .Outputs({"x_out"})
 | |
|     .SetInplaceMap({{"x", "x_out"}})
 | |
|     .SetKernelFn(PD_KERNEL(SaveOutMmsgStatic));
 | |
| 
 | |
| PD_BUILD_STATIC_OP(save_output_dynamic)
 | |
|     .Inputs({"x", "not_need_stop"})
 | |
|     .Attrs({"rank_id: int64_t", "msg_queue_id: int", "save_each_rank: bool"})
 | |
|     .Outputs({"x_out"})
 | |
|     .SetInplaceMap({{"x", "x_out"}})
 | |
|     .SetKernelFn(PD_KERNEL(SaveOutMmsgDynamic));
 |