mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | ||
| //
 | ||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| // you may not use this file except in compliance with the License.
 | ||
| // You may obtain a copy of the License at
 | ||
| //
 | ||
| //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| //
 | ||
| // Unless required by applicable law or agreed to in writing, software
 | ||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| // See the License for the specific language governing permissions and
 | ||
| // limitations under the License.
 | ||
| 
 | ||
| // This code is partially inspired by and references the implementation found
 | ||
| // in FlashInfer.Specifically, the implementation of Top-p Sampling
 | ||
| // functionality in this code is inspired by the logic of FlashInfer’s
 | ||
| // flashinfer.sampling.top_p_sampling_from_probs . For more details on
 | ||
| // FlashInfer’s documentation, please refer to:
 | ||
| // https://docs.flashinfer.ai/generated/flashinfer.sampling.top_p_sampling_from_probs.html
 | ||
| 
 | ||
| #pragma once
 | ||
| 
 | ||
| #include <cub/block/block_adjacent_difference.cuh>
 | ||
| #include <cub/block/block_reduce.cuh>
 | ||
| #include <cub/block/block_scan.cuh>
 | ||
| #include <numeric>
 | ||
| 
 | ||
| #include "sample_kernels/utils.cuh"
 | ||
| 
 | ||
| namespace sampling {
 | ||
| 
 | ||
| using namespace cub;
 | ||
| 
 | ||
| #define DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, ...) \
 | ||
|   if (compute_capacity.first >= 8) {                                           \
 | ||
|     constexpr uint32_t BLOCK_THREADS = 1024;                                   \
 | ||
|     __VA_ARGS__                                                                \
 | ||
|   } else {                                                                     \
 | ||
|     constexpr uint32_t BLOCK_THREADS = 512;                                    \
 | ||
|     __VA_ARGS__                                                                \
 | ||
|   }
 | ||
| 
 | ||
| constexpr BlockScanAlgorithm SCAN_ALGO = BLOCK_SCAN_WARP_SCANS;
 | ||
| constexpr BlockReduceAlgorithm REDUCE_ALGO = BLOCK_REDUCE_WARP_REDUCTIONS;
 | ||
| 
 | ||
| #if (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 >= 120100)
 | ||
| #define SAMPLING_CUB_SUBTRACTLEFT_DEFINED
 | ||
| #endif
 | ||
| 
 | ||
| template <typename T> struct Pair {
 | ||
|   T value;
 | ||
|   int count;
 | ||
| 
 | ||
|   __device__ Pair operator+(const Pair &other) const {
 | ||
|     return {value + other.value, count + other.count};
 | ||
|   }
 | ||
|   __device__ Pair &operator+=(const Pair &other) {
 | ||
|     value += other.value;
 | ||
|     count += other.count;
 | ||
|     return *this;
 | ||
|   }
 | ||
| };
 | ||
| 
 | ||
| template <typename T>
 | ||
| struct ValueCount {
 | ||
|   T value;
 | ||
|   int count;
 | ||
| 
 | ||
|   __device__ ValueCount operator+(const ValueCount& other) const {
 | ||
|     return {value + other.value, count + other.count};
 | ||
|   }
 | ||
|   __device__ ValueCount& operator+=(const ValueCount& other) {
 | ||
|     value += other.value;
 | ||
|     count += other.count;
 | ||
|     return *this;
 | ||
|   }
 | ||
| };
 | ||
| 
 | ||
| struct BoolDiffOp {
 | ||
|   __device__ __forceinline__ bool operator()(const bool &lhs,
 | ||
|                                              const bool &rhs) const {
 | ||
|     return lhs != rhs;
 | ||
|   }
 | ||
| };
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM>
 | ||
| struct SamplingTempStorage {
 | ||
|   union {
 | ||
|     float deterministic_scan[BLOCK_THREADS / 32];
 | ||
|     typename BlockScan<float, BLOCK_THREADS, SCAN_ALGORITHM>::TempStorage scan;
 | ||
|     typename BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce;
 | ||
|     typename BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce_int;
 | ||
|     typename BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
 | ||
|         reduce_value_count;
 | ||
|     typename BlockAdjacentDifference<bool, BLOCK_THREADS>::TempStorage adj_diff;
 | ||
|   } block_prim;
 | ||
|   struct {
 | ||
|     int32_t sampled_id;
 | ||
|     int32_t last_valid_id;
 | ||
|     float max_val;
 | ||
|     union {
 | ||
|       float value;
 | ||
|       ValueCount<float> pair;
 | ||
|     } block_aggregate;
 | ||
|   };
 | ||
| };
 | ||
| 
 | ||
| /*!
 | ||
|  * \brief Deterministic inclusive scan implementation, use Belloch scan
 | ||
|  * algorithm. \note This implementation is slower than the cub::BlockScan, but
 | ||
|  * it is deterministic.
 | ||
|  */
 | ||
| template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS,
 | ||
|           BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM, typename T>
 | ||
| __device__ __forceinline__ void
 | ||
| DeterministicInclusiveSum(const T *in_data, T *out_data,
 | ||
|                           SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM,
 | ||
|                                               REDUCE_ALGORITHM> *temp_storage) {
 | ||
|   T *smem_prefix_sum = temp_storage->block_prim.deterministic_scan;
 | ||
|   T thread_data[VEC_SIZE];
 | ||
|   T thread_sum = 0;
 | ||
| #pragma unroll
 | ||
|   for (uint32_t i = 0; i < VEC_SIZE; ++i) {
 | ||
|     thread_sum += in_data[i];
 | ||
|     thread_data[i] = thread_sum;
 | ||
|   }
 | ||
| 
 | ||
|   T thread_exclusive_prefix_sum = thread_sum;
 | ||
| 
 | ||
| #pragma unroll
 | ||
|   for (uint32_t offset = 1; offset < 32; offset *= 2) {
 | ||
|     T tmp = __shfl_up_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
 | ||
|     if ((threadIdx.x + 1) % (offset * 2) == 0) {
 | ||
|       thread_exclusive_prefix_sum += tmp;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   T warp_sum = __shfl_sync(0xffffffff, thread_exclusive_prefix_sum,
 | ||
|                            threadIdx.x | 0xffffffff);
 | ||
|   if (threadIdx.x % 32 == 31) {
 | ||
|     thread_exclusive_prefix_sum = 0;
 | ||
|   }
 | ||
| 
 | ||
| #pragma unroll
 | ||
|   for (uint32_t offset = 16; offset >= 1; offset /= 2) {
 | ||
|     T tmp = __shfl_xor_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
 | ||
|     if ((threadIdx.x + 1) % (offset * 2) == 0) {
 | ||
|       thread_exclusive_prefix_sum = tmp + thread_exclusive_prefix_sum;
 | ||
|     }
 | ||
|     if ((threadIdx.x + 1) % (offset * 2) == offset) {
 | ||
|       thread_exclusive_prefix_sum = tmp;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   smem_prefix_sum[threadIdx.x / 32] = warp_sum;
 | ||
|   __syncthreads();
 | ||
| 
 | ||
|   if (threadIdx.x < 32) {
 | ||
|     T warp_exclusive_prefix_sum =
 | ||
|         (threadIdx.x < BLOCK_THREADS / 32) ? smem_prefix_sum[threadIdx.x] : 0;
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (uint32_t offset = 1; offset < 32; offset *= 2) {
 | ||
|       T tmp = __shfl_up_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
 | ||
|       if ((threadIdx.x + 1) % (offset * 2) == 0) {
 | ||
|         warp_exclusive_prefix_sum += tmp;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (threadIdx.x % 32 == 31) {
 | ||
|       warp_exclusive_prefix_sum = 0;
 | ||
|     }
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (uint32_t offset = 16; offset >= 1; offset /= 2) {
 | ||
|       T tmp = __shfl_xor_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
 | ||
|       if ((threadIdx.x + 1) % (offset * 2) == 0) {
 | ||
|         warp_exclusive_prefix_sum = tmp + warp_exclusive_prefix_sum;
 | ||
|       }
 | ||
|       if ((threadIdx.x + 1) % (offset * 2) == offset) {
 | ||
|         warp_exclusive_prefix_sum = tmp;
 | ||
|       }
 | ||
|     }
 | ||
|     if (threadIdx.x < BLOCK_THREADS / 32) {
 | ||
|       smem_prefix_sum[threadIdx.x] = warp_exclusive_prefix_sum;
 | ||
|     }
 | ||
|   }
 | ||
|   __syncthreads();
 | ||
| 
 | ||
| #pragma unroll
 | ||
|   for (uint32_t i = 0; i < VEC_SIZE; ++i) {
 | ||
|     out_data[i] = smem_prefix_sum[threadIdx.x / 32] +
 | ||
|                   thread_exclusive_prefix_sum + thread_data[i];
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM, bool DETERMINISTIC, typename Predicate>
 | ||
| __device__ __forceinline__ void DeviceSamplingFromProb(
 | ||
|     uint32_t i, uint32_t d, Predicate pred, float u, vec_t<float, VEC_SIZE> prob_vec,
 | ||
|     float& aggregate,
 | ||
|     SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>* temp_storage) {
 | ||
|   const uint32_t tx = threadIdx.x;
 | ||
|   float prob_greater_than_threshold[VEC_SIZE];
 | ||
|   float inclusive_cdf[VEC_SIZE];
 | ||
|   bool greater_than_u[VEC_SIZE], valid[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|   for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|     prob_greater_than_threshold[j] = pred(prob_vec[j]) ? prob_vec[j] : 0;
 | ||
|     valid[j] = pred(prob_vec[j]) && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d;
 | ||
|   }
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|   float aggregate_local =
 | ||
|       BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage->block_prim.reduce)
 | ||
|           .Sum(prob_greater_than_threshold);
 | ||
| #else
 | ||
|   float aggregate_local =
 | ||
|       BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage->block_prim.reduce)
 | ||
|           .Sum<VEC_SIZE>(prob_greater_than_threshold);
 | ||
| #endif
 | ||
|   if (tx == 0) {
 | ||
|     temp_storage->block_aggregate.value = aggregate_local;
 | ||
|   }
 | ||
|   __syncthreads();
 | ||
|   aggregate_local = temp_storage->block_aggregate.value;
 | ||
| 
 | ||
|   if (aggregate + aggregate_local > u) {
 | ||
|     if constexpr (DETERMINISTIC) {
 | ||
|       DeterministicInclusiveSum<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>(
 | ||
|           prob_greater_than_threshold, inclusive_cdf, temp_storage);
 | ||
|     } else {
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|       BlockScan<float, BLOCK_THREADS, SCAN_ALGORITHM>(temp_storage->block_prim.scan)
 | ||
|           .InclusiveSum(prob_greater_than_threshold, inclusive_cdf);
 | ||
| #else
 | ||
|       BlockScan<float, BLOCK_THREADS, SCAN_ALGORITHM>(temp_storage->block_prim.scan)
 | ||
|           .InclusiveSum<VEC_SIZE>(prob_greater_than_threshold, inclusive_cdf);
 | ||
| #endif
 | ||
| 
 | ||
|       __syncthreads();
 | ||
|     }
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|       greater_than_u[j] = (inclusive_cdf[j] + aggregate > u) && valid[j];
 | ||
|     }
 | ||
| 
 | ||
|     bool greater_than_u_diff[VEC_SIZE];
 | ||
| #ifdef SAMPLING_CUB_SUBTRACTLEFT_DEFINED
 | ||
|     #ifdef PADDLE_WITH_COREX
 | ||
|       BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
 | ||
|           .SubtractLeft(greater_than_u, greater_than_u_diff, BoolDiffOp());
 | ||
|     #else
 | ||
|       BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
 | ||
|           .SubtractLeft<VEC_SIZE>(greater_than_u, greater_than_u_diff, BoolDiffOp());
 | ||
|     #endif
 | ||
| #else
 | ||
|     #ifdef PADDLE_WITH_COREX
 | ||
|       BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
 | ||
|           .FlagHeads(greater_than_u_diff, greater_than_u, BoolDiffOp(), 0);
 | ||
|     #else
 | ||
|       BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
 | ||
|           .FlagHeads<VEC_SIZE>(greater_than_u_diff, greater_than_u, BoolDiffOp(), 0);
 | ||
|     #endif
 | ||
| #endif
 | ||
|     __syncthreads();
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|       if (greater_than_u_diff[j]) {
 | ||
|         atomicMin(&(temp_storage->sampled_id), (i * BLOCK_THREADS + tx) * VEC_SIZE + j);
 | ||
|       }
 | ||
|     }
 | ||
|     __syncthreads();
 | ||
|   }
 | ||
| 
 | ||
|   // update the last valid index
 | ||
|   int valid_index[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|   for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|     if (valid[j]) {
 | ||
|       valid_index[j] = (i * BLOCK_THREADS + tx) * VEC_SIZE + j;
 | ||
|     } else {
 | ||
|       valid_index[j] = -1;
 | ||
|     }
 | ||
|   }
 | ||
|   int max_valid_index =
 | ||
|       BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage->block_prim.reduce_int)
 | ||
|           .Reduce(valid_index, cub::Max());
 | ||
|   if (tx == 0 && max_valid_index != -1) {
 | ||
|     temp_storage->last_valid_id = max_valid_index;
 | ||
|   }
 | ||
|   __syncthreads();
 | ||
|   aggregate += aggregate_local;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
 | ||
|           typename DType, typename IdType>
 | ||
| __global__ void TopKTopPSamplingFromProbKernel(DType* probs, IdType* output,
 | ||
|                                                float* top_p_arr, IdType* top_k_arr,
 | ||
|                                                uint32_t d, uint64_t philox_seed,
 | ||
|                                                uint64_t philox_offset) {
 | ||
|   const uint32_t batch_size = gridDim.x;
 | ||
|   const uint32_t bx = blockIdx.x, tx = threadIdx.x;
 | ||
|   curandStatePhilox4_32_10_t state;
 | ||
|   curand_init(philox_seed, bx, philox_offset, &state);
 | ||
|   const uint32_t row_idx = bx;
 | ||
|   const uint32_t k = top_k_arr[row_idx] == 0 ? d : top_k_arr[row_idx];
 | ||
|   const float p = top_p_arr[row_idx];
 | ||
| 
 | ||
|   extern __shared__ __align__(
 | ||
|       alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
 | ||
|       uint8_t smem_sampling[];
 | ||
|   auto& temp_storage =
 | ||
|       reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
 | ||
|           smem_sampling);
 | ||
| 
 | ||
|   vec_t<float, VEC_SIZE> probs_vec;
 | ||
|   float aggregate;
 | ||
|   float q = 1;
 | ||
|   double low = 0, high = 1.f;
 | ||
|   int sampled_id;
 | ||
|   do {
 | ||
|     temp_storage.sampled_id = d;
 | ||
|     __syncthreads();
 | ||
|     float u = curand_uniform(&state) * q;
 | ||
|     aggregate = 0;
 | ||
| #pragma unroll 2
 | ||
|     for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|       probs_vec.fill(0);
 | ||
|       if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|         probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|       }
 | ||
| 
 | ||
|       DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
 | ||
|                              DETERMINISTIC>(
 | ||
|           i, d, [&](float x) { return x > low; }, u, probs_vec, aggregate, &temp_storage);
 | ||
|       if (aggregate > u) {
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
|     __syncthreads();
 | ||
|     sampled_id = temp_storage.sampled_id;
 | ||
|     if (sampled_id == d) {
 | ||
|       // NOTE(Zihao): this would happen when u is very close to 1
 | ||
|       // and the sum of probabilities is smaller than u
 | ||
|       // In this case, we use the last valid index as the sampled id
 | ||
|       sampled_id = temp_storage.last_valid_id;
 | ||
|     }
 | ||
|     double pivot_0 = probs[row_idx * d + sampled_id];
 | ||
|     double pivot_1 = (pivot_0 + high) / 2;
 | ||
| 
 | ||
|     ValueCount<float> aggregate_gt_pivot_0{0, 0}, aggregate_gt_pivot_1{0, 0};
 | ||
| #pragma unroll 2
 | ||
|     for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|       probs_vec.fill(0);
 | ||
|       if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|         probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|       }
 | ||
| 
 | ||
|       ValueCount<float> probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|       for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|         probs_gt_pivot_0[j] = {
 | ||
|             (probs_vec[j] > pivot_0) ? probs_vec[j] : 0,
 | ||
|             (probs_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
 | ||
|         probs_gt_pivot_1[j] = {
 | ||
|             (probs_vec[j] > pivot_1) ? probs_vec[j] : 0,
 | ||
|             (probs_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
 | ||
|       }
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|       aggregate_gt_pivot_0 +=
 | ||
|           BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
 | ||
|               .Sum(probs_gt_pivot_0);
 | ||
| #else
 | ||
|       aggregate_gt_pivot_0 +=
 | ||
|           BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
 | ||
|               .Sum<VEC_SIZE>(probs_gt_pivot_0);
 | ||
| #endif
 | ||
|       if (tx == 0) {
 | ||
|         temp_storage.block_aggregate.pair = aggregate_gt_pivot_0;
 | ||
|       }
 | ||
|       __syncthreads();
 | ||
|       aggregate_gt_pivot_0 = temp_storage.block_aggregate.pair;
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|       aggregate_gt_pivot_1 +=
 | ||
|           BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
 | ||
|               .Sum(probs_gt_pivot_1);
 | ||
| #else
 | ||
|       aggregate_gt_pivot_1 +=
 | ||
|           BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
 | ||
|               .Sum<VEC_SIZE>(probs_gt_pivot_1);
 | ||
| #endif
 | ||
|       if (tx == 0) {
 | ||
|         temp_storage.block_aggregate.pair = aggregate_gt_pivot_1;
 | ||
|       }
 | ||
|       __syncthreads();
 | ||
|       aggregate_gt_pivot_1 = temp_storage.block_aggregate.pair;
 | ||
|     }
 | ||
|     if (aggregate_gt_pivot_0.count < k && aggregate_gt_pivot_0.value < p) {
 | ||
|       // case 1: pivot_0 accepted
 | ||
|       break;
 | ||
|     }
 | ||
|     if (aggregate_gt_pivot_1.count < k && aggregate_gt_pivot_1.value < p) {
 | ||
|       // case 2: pivot_0 rejected, pivot_1 accepted
 | ||
|       low = pivot_0;
 | ||
|       high = pivot_1;
 | ||
|       q = aggregate_gt_pivot_0.value;
 | ||
|     } else {
 | ||
|       // case 3: pivot_0 rejected, pivot_1 rejected
 | ||
|       low = pivot_1;
 | ||
|       q = aggregate_gt_pivot_1.value;
 | ||
|     }
 | ||
|   } while (low < high);
 | ||
|   __syncthreads();
 | ||
|   if (tx == 0) {
 | ||
|     output[bx] = sampled_id;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
 | ||
|           bool DETERMINISTIC, typename DType, typename IdType>
 | ||
| __global__ void TopPSamplingFromProbKernel(DType* probs, IdType* output,
 | ||
|                                            float* top_p_arr, uint32_t d,
 | ||
|                                            uint64_t philox_seed, uint64_t philox_offset) {
 | ||
|   const uint32_t batch_size = gridDim.x;
 | ||
|   const uint32_t bx = blockIdx.x, tx = threadIdx.x;
 | ||
|   curandStatePhilox4_32_10_t state;
 | ||
|   curand_init(philox_seed, bx, philox_offset, &state);
 | ||
|   const uint32_t row_idx = bx;
 | ||
|   float top_p = top_p_arr[row_idx];
 | ||
| 
 | ||
|   extern __shared__ __align__(
 | ||
|       alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
 | ||
|       uint8_t smem_sampling[];
 | ||
|   auto& temp_storage =
 | ||
|       reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
 | ||
|           smem_sampling);
 | ||
| 
 | ||
|   vec_t<float, VEC_SIZE> probs_vec;
 | ||
|   float aggregate;
 | ||
|   float q = 1;
 | ||
|   double low = 0, high = 1.f;
 | ||
|   int sampled_id;
 | ||
|   do {
 | ||
|     temp_storage.sampled_id = d;
 | ||
|     __syncthreads();
 | ||
|     float u = curand_uniform(&state) * q;
 | ||
|     aggregate = 0;
 | ||
| #pragma unroll 2
 | ||
|     for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|       probs_vec.fill(0);
 | ||
|       if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|         probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|       }
 | ||
| 
 | ||
|       DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
 | ||
|                              DETERMINISTIC>(
 | ||
|           i, d, [&](float x) { return x > low; }, u, probs_vec, aggregate, &temp_storage);
 | ||
|       if (aggregate > u) {
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
|     __syncthreads();
 | ||
|     sampled_id = temp_storage.sampled_id;
 | ||
|     if (sampled_id == d) {
 | ||
|       // NOTE(Zihao): this would happen when u is very close to 1
 | ||
|       // and the sum of probabilities is smaller than u
 | ||
|       // In this case, we use the last valid index as the sampled id
 | ||
|       sampled_id = temp_storage.last_valid_id;
 | ||
|     }
 | ||
|     double pivot_0 = probs[row_idx * d + sampled_id];
 | ||
|     double pivot_1 = (pivot_0 + high) / 2;
 | ||
| 
 | ||
|     float aggregate_gt_pivot_0 = 0, aggregate_gt_pivot_1 = 0;
 | ||
| #pragma unroll 2
 | ||
|     for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|       probs_vec.fill(0);
 | ||
|       if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|         probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|       }
 | ||
| 
 | ||
|       float probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|       for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|         probs_gt_pivot_0[j] = (probs_vec[j] > pivot_0) ? probs_vec[j] : 0;
 | ||
|         probs_gt_pivot_1[j] = (probs_vec[j] > pivot_1) ? probs_vec[j] : 0;
 | ||
|       }
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|       aggregate_gt_pivot_0 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
 | ||
|                                   .Sum(probs_gt_pivot_0);
 | ||
| #else
 | ||
|       aggregate_gt_pivot_0 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
 | ||
|                                   .Sum<VEC_SIZE>(probs_gt_pivot_0);
 | ||
| #endif
 | ||
|       if (tx == 0) {
 | ||
|         temp_storage.block_aggregate.value = aggregate_gt_pivot_0;
 | ||
|       }
 | ||
|       __syncthreads();
 | ||
|       aggregate_gt_pivot_0 = temp_storage.block_aggregate.value;
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|       aggregate_gt_pivot_1 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
 | ||
|                                   .Sum(probs_gt_pivot_1);
 | ||
| #else
 | ||
|       aggregate_gt_pivot_1 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
 | ||
|                                   .Sum<VEC_SIZE>(probs_gt_pivot_1);
 | ||
| #endif
 | ||
|       if (tx == 0) {
 | ||
|         temp_storage.block_aggregate.value = aggregate_gt_pivot_1;
 | ||
|       }
 | ||
|       __syncthreads();
 | ||
|       aggregate_gt_pivot_1 = temp_storage.block_aggregate.value;
 | ||
|     }
 | ||
|     if (aggregate_gt_pivot_0 < top_p) {
 | ||
|       // case 1: pivot_0 accepted
 | ||
|       break;
 | ||
|     }
 | ||
|     if (aggregate_gt_pivot_1 < top_p) {
 | ||
|       // case 2: pivot_0 rejected, pivot_1 accepted
 | ||
|       low = pivot_0;
 | ||
|       high = pivot_1;
 | ||
|       q = aggregate_gt_pivot_0;
 | ||
|     } else {
 | ||
|       // case 3: pivot_0 rejected, pivot_1 rejected
 | ||
|       low = pivot_1;
 | ||
|       q = aggregate_gt_pivot_1;
 | ||
|     }
 | ||
|   } while (low < high);
 | ||
|   __syncthreads();
 | ||
|   if (tx == 0) {
 | ||
|     output[bx] = sampled_id;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
 | ||
|           typename TempStorage>
 | ||
| __device__ __forceinline__ float GetMaxValue(float* in_data, uint32_t row_idx, uint32_t d,
 | ||
|                                              TempStorage& temp_storage) {
 | ||
|   const uint32_t tx = threadIdx.x;
 | ||
|   vec_t<float, VEC_SIZE> in_data_vec;
 | ||
| 
 | ||
|   float max_val = 0;
 | ||
|   for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|     in_data_vec.fill(0);
 | ||
|     if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|       in_data_vec.cast_load(in_data + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|     }
 | ||
|     float in_data_[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|     for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|       in_data_[j] = in_data_vec[j];
 | ||
|     }
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|     max_val = max(
 | ||
|         max_val, BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
 | ||
|                      .Reduce(in_data_, cub::Max()));
 | ||
| #else
 | ||
|     max_val = max(
 | ||
|         max_val, BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
 | ||
|                      .Reduce<VEC_SIZE>(in_data_, cub::Max()));
 | ||
| #endif
 | ||
|     __syncthreads();
 | ||
|   }
 | ||
|   if (tx == 0) {
 | ||
|     temp_storage.max_val = max_val;
 | ||
|   }
 | ||
|   __syncthreads();
 | ||
|   return temp_storage.max_val;
 | ||
| }
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM>
 | ||
| struct RenormTempStorage {
 | ||
|   union {
 | ||
|     typename BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce;
 | ||
|     typename BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce_int;
 | ||
|     typename BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
 | ||
|         reduce_value_count;
 | ||
|   } block_prim;
 | ||
|   struct {
 | ||
|     float max_val;
 | ||
|     float min_val;
 | ||
|     union {
 | ||
|       struct {
 | ||
|         float values[2];
 | ||
|       };
 | ||
|       struct {
 | ||
|         int counts[2];
 | ||
|       };
 | ||
|       struct {
 | ||
|         ValueCount<float> pairs[2];
 | ||
|       };
 | ||
|     } block_aggregate;
 | ||
|   };
 | ||
| };
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
 | ||
|           BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
 | ||
|           typename DType,typename IdType>
 | ||
| __global__ void MinPSamplingFromProbKernel(DType* probs, const float* min_p_arr,
 | ||
|                                             DType* renormed_prob,uint32_t d) {
 | ||
|   const uint32_t bx = blockIdx.x, tx = threadIdx.x;
 | ||
|   float p = (min_p_arr == nullptr) ? 0 : min_p_arr[bx];
 | ||
|   const uint32_t row_idx = bx;
 | ||
| 
 | ||
|   extern __shared__ __align__(
 | ||
|       alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
 | ||
|       uint8_t smem_sampling[];
 | ||
|   auto& temp_storage =
 | ||
|       reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
 | ||
|           smem_sampling);
 | ||
| 
 | ||
|   float max_val = GetMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
 | ||
|                               SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>>(
 | ||
|       probs, row_idx, d, temp_storage);
 | ||
|   float pivot = max_val * p;
 | ||
| 
 | ||
|   vec_t<float, VEC_SIZE> probs_vec;
 | ||
| #pragma unroll 2
 | ||
|   for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|     probs_vec.fill(0);
 | ||
|     if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|       probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
 | ||
|     }
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|       probs_vec[j] = (probs_vec[j] >= pivot) ? probs_vec[j] : 0;
 | ||
|     }
 | ||
|     if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|       probs_vec.store(renormed_prob + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
 | ||
|     }
 | ||
| 
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
 | ||
|           typename DType, typename IdType>
 | ||
| __global__ void TopKRenormProbKernel(DType* probs, DType* renormed_prob, IdType* top_k_arr, uint32_t d) {
 | ||
|   const uint32_t bx = blockIdx.x, tx = threadIdx.x;
 | ||
|   const uint32_t row_idx = bx;
 | ||
|   const uint32_t k = top_k_arr[row_idx] == 0 ? d : top_k_arr[row_idx];
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|   double pivot = std::numeric_limits<float>::infinity(), normalizer = 1;
 | ||
| #else
 | ||
|   double pivot = -cuda::std::numeric_limits<float>::infinity(), normalizer = 1;
 | ||
| #endif
 | ||
|   vec_t<float, VEC_SIZE> probs_vec;
 | ||
|   if (k < d) {
 | ||
|     extern __shared__ __align__(alignof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>))
 | ||
|         uint8_t smem_renorm[];
 | ||
|     auto& temp_storage =
 | ||
|         reinterpret_cast<RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>&>(smem_renorm);
 | ||
|     temp_storage.max_val = 0;
 | ||
| 
 | ||
|     float max_val = GetMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
 | ||
|                                 RenormTempStorage<BLOCK_THREADS, REDUCE_ALGORITHM>>(
 | ||
|         probs, row_idx, d, temp_storage);
 | ||
| 
 | ||
|     double low = 0, high = max_val;
 | ||
|     float min_gt_low, max_le_high;
 | ||
|     float sum_low = 1;
 | ||
|     // f(x) = len(nonzero(probs > x)), f(x) is non-increasing
 | ||
|     // min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs | p <= high}
 | ||
|     // loop invariant:
 | ||
|     // - f(low) >= k, f(high) < k
 | ||
|     // - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
 | ||
|     // stopping condition: min_gt_low == max_le_high
 | ||
|     // - f(low) >= k, f(min_gt_low) == f(max_le_high) == f(high) < k
 | ||
|     do {
 | ||
|       double pivot_0 = (high + 2 * low) / 3;
 | ||
|       double pivot_1 = (2 * high + low) / 3;
 | ||
| 
 | ||
|       ValueCount<float> aggregate_gt_pivot_0{0, 0}, aggregate_gt_pivot_1{0, 0};
 | ||
|       min_gt_low = high;
 | ||
|       max_le_high = low;
 | ||
| #pragma unroll 2
 | ||
|       for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|         probs_vec.fill(0);
 | ||
|         if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|           probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
 | ||
|         }
 | ||
|         ValueCount<float> probs_gt_pivot_0_pair[VEC_SIZE], probs_gt_pivot_1_pair[VEC_SIZE];
 | ||
| #pragma unroll
 | ||
|         for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|           probs_gt_pivot_0_pair[j] = {
 | ||
|               (probs_vec[j] > pivot_0) ? probs_vec[j] : 0,
 | ||
|               (probs_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
 | ||
|           probs_gt_pivot_1_pair[j] = {
 | ||
|               (probs_vec[j] > pivot_1) ? probs_vec[j] : 0,
 | ||
|               (probs_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
 | ||
| 
 | ||
|           if (probs_vec[j] > low && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
 | ||
|             min_gt_low = min(min_gt_low, probs_vec[j]);
 | ||
|           }
 | ||
|           if (probs_vec[j] <= high && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
 | ||
|             max_le_high = max(max_le_high, probs_vec[j]);
 | ||
|           }
 | ||
|         }
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|         aggregate_gt_pivot_0 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
 | ||
|                                     temp_storage.block_prim.reduce_value_count)
 | ||
|                                     .Sum(probs_gt_pivot_0_pair);
 | ||
| #else
 | ||
|         aggregate_gt_pivot_0 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
 | ||
|                                     temp_storage.block_prim.reduce_value_count)
 | ||
|                                     .Sum<VEC_SIZE>(probs_gt_pivot_0_pair);
 | ||
| #endif
 | ||
|         __syncthreads();
 | ||
| 
 | ||
| #ifdef PADDLE_WITH_COREX
 | ||
|         aggregate_gt_pivot_1 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
 | ||
|                                     temp_storage.block_prim.reduce_value_count)
 | ||
|                                     .Sum(probs_gt_pivot_1_pair);
 | ||
| #else
 | ||
|         aggregate_gt_pivot_1 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
 | ||
|                                     temp_storage.block_prim.reduce_value_count)
 | ||
|                                     .Sum<VEC_SIZE>(probs_gt_pivot_1_pair);
 | ||
| #endif
 | ||
|         __syncthreads();
 | ||
|       }
 | ||
|       min_gt_low =
 | ||
|           BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
 | ||
|               .Reduce(min_gt_low, cub::Min());
 | ||
|       __syncthreads();
 | ||
|       max_le_high =
 | ||
|           BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
 | ||
|               .Reduce(max_le_high, cub::Max());
 | ||
|       if (tx == 0) {
 | ||
|         temp_storage.block_aggregate.pairs[0] = aggregate_gt_pivot_0;
 | ||
|         temp_storage.block_aggregate.pairs[1] = aggregate_gt_pivot_1;
 | ||
|         temp_storage.min_val = min_gt_low;
 | ||
|         temp_storage.max_val = max_le_high;
 | ||
|       }
 | ||
|       __syncthreads();
 | ||
|       aggregate_gt_pivot_0 = temp_storage.block_aggregate.pairs[0];
 | ||
|       aggregate_gt_pivot_1 = temp_storage.block_aggregate.pairs[1];
 | ||
|       min_gt_low = temp_storage.min_val;
 | ||
|       max_le_high = temp_storage.max_val;
 | ||
| 
 | ||
|       if (aggregate_gt_pivot_1.count >= k) {
 | ||
|         low = pivot_1;
 | ||
|         sum_low = float(aggregate_gt_pivot_1.value);
 | ||
|       } else if (aggregate_gt_pivot_0.count >= k) {
 | ||
|         low = pivot_0;
 | ||
|         high = min(pivot_1, max_le_high);
 | ||
|         sum_low = float(aggregate_gt_pivot_0.value);
 | ||
|       } else {
 | ||
|         high = min(pivot_0, max_le_high);
 | ||
|       }
 | ||
|     } while (min_gt_low != max_le_high);
 | ||
| 
 | ||
|     normalizer = ptx_rcp(max(sum_low, 1e-8));
 | ||
|     pivot = low;
 | ||
|   }
 | ||
| 
 | ||
|   // normalize
 | ||
| #pragma unroll 2
 | ||
|   for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
 | ||
|     probs_vec.fill(0);
 | ||
|     if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|       probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
 | ||
|     }
 | ||
| #pragma unroll
 | ||
|     for (uint32_t j = 0; j < VEC_SIZE; ++j) {
 | ||
|       probs_vec[j] = (probs_vec[j] > pivot) ? probs_vec[j] * normalizer : 0;
 | ||
|     }
 | ||
|     if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
 | ||
|       probs_vec.store(renormed_prob + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| template <typename T, typename IdType>
 | ||
| cudaError_t TopPSamplingFromProb(T *probs, IdType *output,
 | ||
|                                  uint32_t batch_size, const T *top_p_val,
 | ||
|                                  uint32_t d, bool deterministic,
 | ||
|                                  uint64_t philox_seed, uint64_t philox_offset,
 | ||
|                                  cudaStream_t stream = 0) {
 | ||
|   constexpr uint32_t BLOCK_THREADS = 1024;
 | ||
|   const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
 | ||
| 
 | ||
|   const uint32_t smem_size =
 | ||
|       sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
 | ||
|   dim3 nblks(batch_size);
 | ||
|   dim3 nthrs(BLOCK_THREADS);
 | ||
|   void* args[] = {&probs,     &output,       &top_p_val,
 | ||
|                   &d,         &philox_seed,  &philox_offset};
 | ||
| 
 | ||
|   DISPATCH_ALIGNED_VEC_SIZE(
 | ||
|       vec_size, VEC_SIZE,
 | ||
|       {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
 | ||
|         auto kernel =
 | ||
|             TopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
 | ||
|                                        VEC_SIZE, DETERMINISTIC, T, IdType>;
 | ||
|         CUDA_CALL(cudaFuncSetAttribute(
 | ||
|             kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
 | ||
|         CUDA_CALL(cudaLaunchKernel((void *)kernel, nblks, nthrs, args,
 | ||
|                                    smem_size, stream));
 | ||
|       })});
 | ||
|   return cudaSuccess;
 | ||
| }
 | ||
| 
 | ||
| template <typename T,typename IdType>
 | ||
| cudaError_t MinPSamplingFromProb(T *probs, const T* min_p_arr,T *renormed_prob,
 | ||
|                                  uint32_t batch_size,
 | ||
|                                  uint32_t d, bool deterministic,
 | ||
|                                  cudaStream_t stream = 0){
 | ||
|   constexpr uint32_t BLOCK_THREADS = 1024;
 | ||
|   const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
 | ||
| 
 | ||
|   const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
 | ||
|   dim3 nblks(batch_size);
 | ||
|   dim3 nthrs(BLOCK_THREADS);
 | ||
|   void* args[] = {&probs, &min_p_arr,&renormed_prob,&d};
 | ||
|   DISPATCH_ALIGNED_VEC_SIZE(
 | ||
|       vec_size, VEC_SIZE,
 | ||
|       {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
 | ||
|         auto kernel =
 | ||
|             MinPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
 | ||
|                                        VEC_SIZE, DETERMINISTIC, T,IdType>;
 | ||
|         CUDA_CALL(cudaFuncSetAttribute(
 | ||
|             kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
 | ||
|         CUDA_CALL(cudaLaunchKernel((void *)kernel, nblks, nthrs, args,
 | ||
|                                    smem_size, stream));
 | ||
|       })});
 | ||
|   return cudaSuccess;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| template <typename T, typename IdType>
 | ||
| cudaError_t TopKTopPSamplingFromProb(T *probs, IdType *output,
 | ||
|                                      uint32_t batch_size, const T *top_p_val, const IdType *top_k_val,
 | ||
|                                      uint32_t d, bool deterministic,
 | ||
|                                      uint64_t philox_seed, uint64_t philox_offset,
 | ||
|                                      cudaStream_t stream = 0) {
 | ||
|   const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
 | ||
| 
 | ||
|   auto compute_capacity = GetCudaComputeCapability();
 | ||
|   DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
 | ||
|     const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
 | ||
|     dim3 nblks(batch_size);
 | ||
|     dim3 nthrs(BLOCK_THREADS);
 | ||
|     void* args[] = {&probs,     &output,       &top_p_val, &top_k_val,
 | ||
|                     &d,         &philox_seed,  &philox_offset};
 | ||
| 
 | ||
|     DISPATCH_ALIGNED_VEC_SIZE(
 | ||
|         vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
 | ||
|           auto kernel = TopKTopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
 | ||
|                                                        VEC_SIZE, DETERMINISTIC, T, IdType>;
 | ||
|           CUDA_CALL(
 | ||
|               cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
 | ||
|           CUDA_CALL(
 | ||
|               cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
 | ||
|         })});
 | ||
|     return cudaSuccess;
 | ||
|   });
 | ||
| }
 | ||
| 
 | ||
| template <typename DType, typename IdType>
 | ||
| cudaError_t TopKRenormProb(DType* probs, DType* renormed_prob, IdType* top_k_arr,
 | ||
|                            uint32_t batch_size, uint32_t d,
 | ||
|                            cudaStream_t stream = 0) {
 | ||
|   const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
 | ||
| 
 | ||
|   auto compute_capacity = GetCudaComputeCapability();
 | ||
|   DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
 | ||
|     const uint32_t smem_size = sizeof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>);
 | ||
|     dim3 nblks(batch_size);
 | ||
|     dim3 nthrs(BLOCK_THREADS);
 | ||
|     void* args[] = {&probs, &renormed_prob, &top_k_arr, &d};
 | ||
|     DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
 | ||
|       auto kernel = TopKRenormProbKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE, DType, IdType>;
 | ||
|       CUDA_CALL(
 | ||
|           cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
 | ||
|       CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
 | ||
|     });
 | ||
|     return cudaSuccess;
 | ||
|   });
 | ||
| }
 | ||
| 
 | ||
| } // namespace sampling
 | 
