mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* fuse bgr2rgb+normalize+hwc2chw * add more middle processors in fuse bgr2rgb with normalize * remove limit long
124 lines
4.3 KiB
C++
124 lines
4.3 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/common/processors/normalize_and_permute.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
NormalizeAndPermute::NormalizeAndPermute(const std::vector<float>& mean,
|
|
const std::vector<float>& std,
|
|
bool is_scale,
|
|
const std::vector<float>& min,
|
|
const std::vector<float>& max,
|
|
bool swap_rb) {
|
|
FDASSERT(mean.size() == std.size(),
|
|
"Normalize: requires the size of mean equal to the size of std.");
|
|
std::vector<double> mean_(mean.begin(), mean.end());
|
|
std::vector<double> std_(std.begin(), std.end());
|
|
std::vector<double> min_(mean.size(), 0.0);
|
|
std::vector<double> max_(mean.size(), 255.0);
|
|
if (min.size() != 0) {
|
|
FDASSERT(
|
|
min.size() == mean.size(),
|
|
"Normalize: while min is defined, requires the size of min equal to "
|
|
"the size of mean.");
|
|
min_.assign(min.begin(), min.end());
|
|
}
|
|
if (max.size() != 0) {
|
|
FDASSERT(
|
|
min.size() == mean.size(),
|
|
"Normalize: while max is defined, requires the size of max equal to "
|
|
"the size of mean.");
|
|
max_.assign(max.begin(), max.end());
|
|
}
|
|
for (auto c = 0; c < mean_.size(); ++c) {
|
|
double alpha = 1.0;
|
|
if (is_scale) {
|
|
alpha /= (max_[c] - min_[c]);
|
|
}
|
|
double beta = -1.0 * (mean_[c] + min_[c] * alpha) / std_[c];
|
|
alpha /= std_[c];
|
|
alpha_.push_back(alpha);
|
|
beta_.push_back(beta);
|
|
}
|
|
swap_rb_ = swap_rb;
|
|
}
|
|
|
|
bool NormalizeAndPermute::ImplByOpenCV(Mat* mat) {
|
|
cv::Mat* im = mat->GetOpenCVMat();
|
|
int origin_w = im->cols;
|
|
int origin_h = im->rows;
|
|
std::vector<cv::Mat> split_im;
|
|
cv::split(*im, split_im);
|
|
if (swap_rb_) std::swap(split_im[0], split_im[2]);
|
|
for (int c = 0; c < im->channels(); c++) {
|
|
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
|
|
}
|
|
cv::Mat res(origin_h, origin_w, CV_32FC(im->channels()));
|
|
for (int i = 0; i < im->channels(); ++i) {
|
|
cv::extractChannel(split_im[i],
|
|
cv::Mat(origin_h, origin_w, CV_32FC1,
|
|
res.ptr() + i * origin_h * origin_w * 4),
|
|
0);
|
|
}
|
|
|
|
mat->SetMat(res);
|
|
mat->layout = Layout::CHW;
|
|
return true;
|
|
}
|
|
|
|
#ifdef ENABLE_FLYCV
|
|
bool NormalizeAndPermute::ImplByFlyCV(Mat* mat) {
|
|
if (mat->layout != Layout::HWC) {
|
|
FDERROR << "Only supports input with HWC layout." << std::endl;
|
|
return false;
|
|
}
|
|
fcv::Mat* im = mat->GetFlyCVMat();
|
|
if (im->channels() != 3) {
|
|
FDERROR << "Only supports 3-channels image in FlyCV, but now it's "
|
|
<< im->channels() << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<float> mean(3, 0);
|
|
std::vector<float> std(3, 0);
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
std[i] = 1.0 / alpha_[i];
|
|
mean[i] = -1 * beta_[i] * std[i];
|
|
}
|
|
|
|
std::vector<uint32_t> channel_reorder_index = {0, 1, 2};
|
|
if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
|
|
|
|
fcv::Mat new_im;
|
|
fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
|
|
new_im, false);
|
|
mat->SetMat(new_im);
|
|
mat->layout = Layout::CHW;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
bool NormalizeAndPermute::Run(Mat* mat, const std::vector<float>& mean,
|
|
const std::vector<float>& std, bool is_scale,
|
|
const std::vector<float>& min,
|
|
const std::vector<float>& max, ProcLib lib,
|
|
bool swap_rb) {
|
|
auto n = NormalizeAndPermute(mean, std, is_scale, min, max, swap_rb);
|
|
return n(mat, lib);
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|