Files
FastDeploy/examples/vision/detection/paddledetection/rknpu2
Zheng_Bicheng 6408af263a [Add Model]Add RKPicodet (#495)
* 11-02/14:35
* 新增输入数据format错误判断
* 优化推理过程,减少内存分配次数
* 支持多输入rknn模型
* rknn模型输出shape为三维时,输出将被强制对齐为4纬。现在将直接抹除rknn补充的shape,方便部分对输出shape进行判断的模型进行正确的后处理。

* 11-03/17:25
* 支持导出多输入RKNN模型
* 更新各种文档
* ppseg改用Fastdeploy中的模型进行转换

* 11-03/17:25
* 新增开源头

* 11-03/21:48
* 删除无用debug代码,补充注释

* 11-04/01:00
* 新增rkpicodet代码

* 11-04/13:13
* 提交编译缺少的文件

* 11-04/14:03
* 更新安装文档

* 11-04/14:21
* 更新picodet_s配置文件

* 11-04/14:21
* 更新picodet自适应输出结果

* 11-04/14:21
* 更新文档

* * 更新配置文件

* * 修正配置文件

* * 添加缺失的python文件

* * 修正文档

* * 修正代码格式问题0

* * 按照要求修改

* * 按照要求修改

* * 按照要求修改

* * 按照要求修改

* * 按照要求修改

* test
2022-11-06 17:29:00 +08:00
..
2022-11-06 17:29:00 +08:00
2022-11-06 17:29:00 +08:00
2022-11-06 17:29:00 +08:00

PaddleDetection RKNPU2部署示例

支持模型列表

目前FastDeploy支持如下模型的部署

准备PaddleDetection部署模型以及转换模型

RKNPU部署模型前需要将Paddle模型转换成RKNN模型具体步骤如下:

  • Paddle动态图模型转换为ONNX模型请参考PaddleDetection导出模型 ,注意在转换时请设置export.nms=True.
  • ONNX模型转换RKNN模型的过程请参考转换文档进行转换。

模型转换example

下面以Picodet-npu为例子,教大家如何转换PaddleDetection模型到RKNN模型。

## 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/fastdeploy/models/rknn2/picodet_s_416_coco_npu.zip
unzip -qo picodet_s_416_coco_npu.zip

# 静态图转ONNX模型注意这里的save_file请和压缩包名对齐
paddle2onnx --model_dir picodet_s_416_coco_npu \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
            --enable_dev_version True

python -m paddle2onnx.optimize --input_model picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
                                --output_model picodet_s_416_coco_npu/picodet_s_416_coco_npu.onnx \
                                --input_shape_dict "{'image':[1,3,416,416]}"
# ONNX模型转RKNN模型
# 转换模型,模型将生成在picodet_s_320_coco_lcnet_non_postprocess目录下
python tools/rknpu2/export.py --config_path tools/rknpu2/config/RK3588/picodet_s_416_coco_npu.yaml