mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 866d044898
			
		
	
	866d044898
	
	
	
		
			
			* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
		
			
				
	
	
		
			52 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			52 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fastdeploy as fd
 | |
| import cv2
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--model", required=True, help="Path of FastestDet onnx model.")
 | |
|     parser.add_argument(
 | |
|         "--image", required=True, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default='cpu',
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--use_trt",
 | |
|         type=ast.literal_eval,
 | |
|         default=False,
 | |
|         help="Wether to use tensorrt.")
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
|     option = fd.RuntimeOption()
 | |
| 
 | |
|     if args.device.lower() == "gpu":
 | |
|         option.use_gpu()
 | |
| 
 | |
|     if args.use_trt:
 | |
|         option.use_trt_backend()
 | |
|         option.set_trt_input_shape("images", [1, 3, 352, 352])
 | |
|     return option
 | |
| 
 | |
| 
 | |
| args = parse_arguments()
 | |
| 
 | |
| # Configure runtime and load model
 | |
| runtime_option = build_option(args)
 | |
| model = fd.vision.detection.FastestDet(args.model, runtime_option=runtime_option)
 | |
| 
 | |
| # Predict picture detection results
 | |
| im = cv2.imread(args.image)
 | |
| result = model.predict(im)
 | |
| 
 | |
| # Visualization of prediction results
 | |
| vis_im = fd.vision.vis_detection(im, result)
 | |
| cv2.imwrite("visualized_result.jpg", vis_im)
 | |
| print("Visualized result save in ./visualized_result.jpg")
 |