Files
FastDeploy/tests/output/test_process_batch_output.py
2025-12-17 20:53:04 +08:00

240 lines
9.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import random
import time
import unittest
from unittest.mock import Mock
import paddle
from fastdeploy.engine.request import RequestOutput
from fastdeploy.output.token_processor import TokenProcessor
paddle.set_device("cpu")
# Mock classes and constants needed for the test
class MockConfig:
class ParallelConfig:
local_data_parallel_id = 0
class SpeculativeConfig:
method = None
class ModelConfig:
enable_logprob = False
class SchedulerConfig:
name = "default"
class CacheConfig:
enable_prefix_caching = False
enable_output_caching = False
block_size = 64
parallel_config = ParallelConfig()
speculative_config = SpeculativeConfig()
model_config = ModelConfig()
scheduler_config = SchedulerConfig()
cache_config = CacheConfig()
class MockTask:
def __init__(self):
self.request_id = "test_request_1"
self.arrival_time = time.time()
self.inference_start_time = time.time()
self.schedule_start_time = time.time()
self.preprocess_end_time = time.time() - 0.1
self.preprocess_start_time = time.time() - 0.2
self.eos_token_ids = [2]
self.output_token_ids = []
self.messages = "Test prompt"
self.num_cached_tokens = 0
self.disaggregate_info = None
self.prefill_chunk_info = None
self.prefill_chunk_num = 0
self.llm_engine_recv_req_timestamp = time.time()
self.ic_req_data = {}
self.prompt_token_ids_len = 0
def get(self, key: str, default_value=None):
if hasattr(self, key):
return getattr(self, key)
elif hasattr(self, "sampling_params") and hasattr(self.sampling_params, key):
return getattr(self.sampling_params, key)
else:
return default_value
class MockResourceManager:
def __init__(self):
self.stop_flags = [False]
self.tasks_list = [MockTask()]
self.to_be_rescheduled_request_id_set = set()
def info(self):
return "Mock resource manager info"
def reschedule_preempt_task(self, task_id):
pass
class MockCachedGeneratedTokens:
def __init__(self):
self.cache = []
def put_results(self, results):
self.cache.extend(results)
# Constants
RECOVERY_STOP_SIGNAL = -3
MAX_BSZ = 512
K = 20
MAX_DRAFT_TOKENS = 6
SPECULATE_MAX_BSZ = 256
class TestTokenProcessorProcessBatchOutput(unittest.TestCase):
def setup_token_processor(self, speculative_decoding=False, use_logprobs=False):
"""Helper method to setup TokenProcessor with different configurations"""
cfg = MockConfig()
cfg.speculative_config.method = "mtp" if speculative_decoding else None
cfg.speculative_config.num_speculative_tokens = 1
cfg.model_config.enable_logprob = use_logprobs
processor = TokenProcessor.__new__(TokenProcessor)
processor.cfg = cfg
processor.cached_generated_tokens: MockCachedGeneratedTokens = MockCachedGeneratedTokens()
processor.executor = Mock()
processor.engine_worker_queue = Mock()
processor.split_connector = Mock()
processor.resource_manager = MockResourceManager()
task1 = MockTask()
task2 = MockTask()
processor.resource_manager.tasks_list = [task1, task2]
processor.resource_manager.stop_flags = [False, False]
processor.tokens_counter = {task1.request_id: 0, task2.request_id: 0}
processor.total_step = 0
processor.number_of_output_tokens = 0
processor.prefill_result_status = {}
processor.use_logprobs = use_logprobs
processor.num_draft_tokens = 0
processor.num_accepted_tokens = 0
processor.num_emitted_tokens = 0
processor.max_num_emitted_tokens = 0
processor.speculative_stats_step = 0
processor.total_step_per_request = {}
processor.accept_token_num_per_head_per_request = {}
processor.accept_token_num_per_head = [0] * MAX_DRAFT_TOKENS
# processor._recycle_resources = Mock()
if speculative_decoding:
if use_logprobs:
processor.output_tokens = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1) + MAX_BSZ + 3, 1],
fill_value=2,
dtype="int64",
)
processor.output_scores = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1), 1],
fill_value=0.0,
dtype="float32",
)
processor.output_ranks = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS],
fill_value=0,
dtype="int64",
)
else:
processor.output_tokens = paddle.full(
shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2],
fill_value=2,
dtype="int64",
)
elif use_logprobs:
processor.output_tokens = paddle.full(shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64")
processor.output_scores = paddle.full(shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32")
processor.output_ranks = paddle.full(shape=[MAX_BSZ], fill_value=0, dtype="int64")
else:
processor.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1], fill_value=2, dtype="int64")
return processor
def test_speculative_decoding_use_logprobs(self):
"""Test basic speculative decoding scenario"""
processor = self.setup_token_processor(speculative_decoding=True, use_logprobs=True)
# stop_flag
processor.output_tokens[0, 0].set_tensor(paddle.to_tensor(2))
# mtype target = 3, decode = 4
processor.output_tokens[1, 0].set_tensor(paddle.to_tensor(3))
# batch
processor.output_tokens[2, 0].set_tensor(paddle.to_tensor(2))
# accept_num
processor.output_tokens[3, 0].set_tensor(paddle.to_tensor(3))
processor.output_tokens[4, 0].set_tensor(paddle.to_tensor(3))
batch = processor.output_tokens[2, 0]
mtype = processor.output_tokens[3, 0]
accept_num = [int(num[0]) for num in processor.output_tokens[3 : batch + 3]]
# init
print(f"batch:{batch}, mtype:{mtype} accept_num: {accept_num}")
for i in range(batch):
for j in range(accept_num[i]):
token_index = 3 + MAX_BSZ + i * MAX_DRAFT_TOKENS * (K + 1) + j * (K + 1)
score_index = i * MAX_DRAFT_TOKENS * (K + 1) + j * (K + 1)
print(f"batch:{i}, accept:{j} token_index: {token_index} score_index: {score_index}")
for k in range(K + 1):
processor.output_tokens[token_index + k].set_tensor(paddle.to_tensor(random.randint(100, 100000)))
processor.output_scores[score_index + k].set_tensor(paddle.to_tensor(random.random()))
processor.output_ranks[j].set_tensor(paddle.to_tensor(1))
processor._process_batch_output()
batch_result_buffer: list[RequestOutput] = processor._batch_result_buffer
for i, request_output in enumerate(batch_result_buffer):
assert isinstance(request_output, RequestOutput)
assert len(request_output.outputs.token_ids) == accept_num[i]
assert len(request_output.outputs.top_logprobs) == 3
# tokens, scores, ranks
assert len(request_output.outputs.top_logprobs[0][0]) == K + 1
assert len(request_output.outputs.top_logprobs[1][0]) == K + 1
assert len(request_output.outputs.top_logprobs[2]) == accept_num[i]
# mtype = 4
processor.output_tokens[1, 0].set_tensor(paddle.to_tensor(4))
processor._process_batch_output()
cached_generated_tokens: MockCachedGeneratedTokens = processor.cached_generated_tokens
for c in cached_generated_tokens.cache:
assert isinstance(request_output, RequestOutput)
assert len(request_output.outputs.token_ids) == accept_num[i]
assert len(request_output.outputs.top_logprobs) == 3
assert len(request_output.outputs.draft_top_logprobs) == 3
# tokens, scores, ranks
assert len(request_output.outputs.draft_top_logprobs[0][0]) == K + 1
assert len(request_output.outputs.draft_top_logprobs[1][0]) == K + 1
assert len(request_output.outputs.draft_top_logprobs[2]) == accept_num[i]
if __name__ == "__main__":
unittest.main(verbosity=2, buffer=False)