mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 77cb9db6da
			
		
	
	77cb9db6da
	
	
	
		
			
			* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
		
			
				
	
	
		
			109 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "fastdeploy/vision/detection/ppdet/base.h"
 | |
| 
 | |
| #include "fastdeploy/utils/unique_ptr.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| #include "yaml-cpp/yaml.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| PPDetBase::PPDetBase(const std::string& model_file,
 | |
|                      const std::string& params_file,
 | |
|                      const std::string& config_file,
 | |
|                      const RuntimeOption& custom_option,
 | |
|                      const ModelFormat& model_format)
 | |
|     : preprocessor_(config_file), postprocessor_(preprocessor_.GetArch()) {
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<PPDetBase> PPDetBase::Clone() const {
 | |
|   std::unique_ptr<PPDetBase> clone_model =
 | |
|       fastdeploy::utils::make_unique<PPDetBase>(PPDetBase(*this));
 | |
|   clone_model->SetRuntime(clone_model->CloneRuntime());
 | |
|   return clone_model;
 | |
| }
 | |
| 
 | |
| bool PPDetBase::Initialize() {
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPDetBase::Predict(cv::Mat* im, DetectionResult* result) {
 | |
|   return Predict(*im, result);
 | |
| }
 | |
| 
 | |
| bool PPDetBase::Predict(const cv::Mat& im, DetectionResult* result) {
 | |
|   std::vector<DetectionResult> results;
 | |
|   if (!BatchPredict({im}, &results)) {
 | |
|     return false;
 | |
|   }
 | |
|   *result = std::move(results[0]);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPDetBase::BatchPredict(const std::vector<cv::Mat>& imgs,
 | |
|                              std::vector<DetectionResult>* results) {
 | |
|   std::vector<FDMat> fd_images = WrapMat(imgs);
 | |
|   if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
 | |
|     FDERROR << "Failed to preprocess the input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   reused_input_tensors_[0].name = "image";
 | |
|   reused_input_tensors_[1].name = "scale_factor";
 | |
|   reused_input_tensors_[2].name = "im_shape";
 | |
| 
 | |
|   if (NumInputsOfRuntime() == 1) {
 | |
|     auto scale_factor = static_cast<float*>(reused_input_tensors_[1].Data());
 | |
|     postprocessor_.SetScaleFactor({scale_factor[0], scale_factor[1]});
 | |
|   }
 | |
| 
 | |
|   // Some models don't need scale_factor and im_shape as input
 | |
|   while (reused_input_tensors_.size() != NumInputsOfRuntime()) {
 | |
|     reused_input_tensors_.pop_back();
 | |
|   }
 | |
| 
 | |
|   if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
 | |
|     FDERROR << "Failed to inference by runtime." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!postprocessor_.Run(reused_output_tensors_, results)) {
 | |
|     FDERROR << "Failed to postprocess the inference results by runtime."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPDetBase::CheckArch() {
 | |
|   // Add "PicoDet" arch for backward compability with the
 | |
|   // old ppdet model, such as picodet from PaddleClas
 | |
|   // PP-ShiTuV2 pipeline.
 | |
|   std::vector<std::string> archs = {
 | |
|       "SOLOv2", "YOLO",   "SSD",    "RetinaNet", "RCNN",   "Face",
 | |
|       "GFL",    "YOLOX",  "YOLOv5", "YOLOv6",    "YOLOv7", "RTMDet",
 | |
|       "FCOS",   "TTFNet", "TOOD",   "DETR",      "PicoDet"};
 | |
|   auto arch_ = preprocessor_.GetArch();
 | |
|   for (auto item : archs) {
 | |
|     if (arch_ == item) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   FDWARNING << "Please set model arch,"
 | |
|             << "support value : SOLOv2, YOLO, SSD, RetinaNet, "
 | |
|             << "RCNN, Face , GFL , RTMDet ,"
 | |
|             << "FCOS , TTFNet , TOOD , DETR, PicoDet" << std::endl;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |