mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
72 lines
2.6 KiB
C++
72 lines
2.6 KiB
C++
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cstddef>
|
|
#include <stdint.h>
|
|
#include <vector>
|
|
|
|
namespace kernels
|
|
{
|
|
namespace cutlass_kernels
|
|
{
|
|
|
|
enum class QuantType
|
|
{
|
|
W8_A16,
|
|
W4_A16,
|
|
W4_AFP8
|
|
};
|
|
|
|
constexpr int get_weight_quant_bits(QuantType quant_type)
|
|
{
|
|
switch (quant_type)
|
|
{
|
|
case QuantType::W8_A16: return 8;
|
|
case QuantType::W4_A16: return 4;
|
|
case QuantType::W4_AFP8: return 4;
|
|
default: PADDLE_THROW("Invalid quant_type"); return -1;
|
|
}
|
|
}
|
|
|
|
// Shapes here can be 2 or 3D. 2-D shapes are [num_rows, num_cols]
|
|
// 3-D shapes are [num_experts, num_rows, num_cols]
|
|
void permute_B_rows_for_mixed_gemm(int8_t* permuted_quantized_tensor, int8_t const* quantized_tensor,
|
|
std::vector<size_t> const& shape, QuantType quant_type, const int64_t arch_version);
|
|
|
|
void subbyte_transpose(int8_t* transposed_quantized_tensor, int8_t const* quantized_tensor,
|
|
std::vector<size_t> const& shape, QuantType quant_type);
|
|
|
|
void add_bias_and_interleave_quantized_tensor_inplace(int8_t* tensor, const size_t num_elts, QuantType quant_type);
|
|
|
|
void preprocess_weights_for_mixed_gemm(int8_t* preprocessed_quantized_weight, int8_t const* row_major_quantized_weight,
|
|
std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave = false);
|
|
|
|
template <typename ComputeType, typename WeightType>
|
|
void symmetric_quantize(int8_t* processed_quantized_weight, ComputeType* scale_ptr, WeightType const* input_weight_ptr,
|
|
std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave);
|
|
|
|
// This is exposed so that we can write tests that use the processed weights for CUTLASS but the unprocessed weight
|
|
// to implement a simple reference implementation.
|
|
template <typename ComputeType, typename WeightType>
|
|
void symmetric_quantize(int8_t* processed_quantized_weight, int8_t* unprocessed_quantized_weight,
|
|
ComputeType* scale_ptr, WeightType const* input_weight_ptr, std::vector<size_t> const& shape, QuantType quant_type,
|
|
bool force_interleave);
|
|
|
|
} // namespace cutlass_kernels
|
|
} // namespace kernels
|