Files
FastDeploy/test/ci_use/EB_Lite/test_EB_Lite_serving.py
2025-07-18 19:43:19 +08:00

380 lines
12 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import socket
import subprocess
import sys
import time
import openai
import pytest
import requests
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output("lsof -i:{} -t".format(port), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print("Killed process on port {}, pid={}".format(port, pid))
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle")
else:
model_path = "./ernie-4_5-21b-a3b-bf16-paddle"
log_path = "server.log"
cmd = [
sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server",
"--model", model_path,
"--port", str(FD_API_PORT),
"--tensor-parallel-size", "1",
"--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT),
"--metrics-port", str(FD_METRICS_PORT),
"--max-model-len", "32768",
"--max-num-seqs", "128",
"--quantization", "wint4",
"--use-cudagraph",
"--max-capture-batch-size", "1"
]
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True # Enables killing full group via os.killpg
)
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print("API server is up on port {}".format(FD_API_PORT))
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print("Failed to kill process group: {}".format(e))
raise RuntimeError("API server did not start on port {}".format(FD_API_PORT))
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print("API server (pid={}) terminated".format(process.pid))
except Exception as e:
print("Failed to terminate API server: {}".format(e))
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return "http://0.0.0.0:{}/v1/chat/completions".format(FD_API_PORT)
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return "http://0.0.0.0:{}/metrics".format(FD_METRICS_PORT)
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
"temperature": 0.9,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13 # fixed random seed
}
# ==========================
# Helper function to calculate difference rate between two texts
# ==========================
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0
# ==========================
# Consistency test for repeated runs with fixed payload
# ==========================
def test_consistency_between_runs(api_url, headers, consistent_payload):
"""
Test that two runs with the same fixed input produce similar outputs.
"""
# First request
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
result1 = resp1.json()
content1 = result1["choices"][0]["message"]["content"]
# Second request
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp2.status_code == 200
result2 = resp2.json()
content2 = result2["choices"][0]["message"]["content"]
# Calculate difference rate
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, "Output difference too large ({:.4%})".format(diff_rate)
# ==========================
# OpenAI Client chat.completions Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url="http://{}:{}/v1".format(ip, service_http_port),
api_key="EMPTY_API_KEY"
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=1,
max_tokens=1024,
stream=False,
)
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert hasattr(response.choices[0], 'message')
assert hasattr(response.choices[0].message, 'content')
# Streaming test
def test_streaming_chat(openai_client, capsys):
"""
Test streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
{"role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra)."},
{"role": "user", "content": "OK, tell more."},
],
temperature=1,
max_tokens=1024,
stream=True,
)
output = []
for chunk in response:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
output.append(chunk.choices[0].delta.content)
assert len(output) > 2
# ==========================
# OpenAI Client completions Test
# ==========================
def test_non_streaming(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, 'choices')
assert len(response.choices) > 0
def test_streaming(openai_client, capsys):
"""
Test streaming functionality with the local service
"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=True,
)
# Collect streaming output
output = []
for chunk in response:
output.append(chunk.choices[0].text)
assert len(output) > 0
def test_non_streaming_with_stop_str(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello, how are you?"}],
temperature=1,
max_tokens=5,
metadata={"include_stop_str_in_output": True},
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert response.choices[0].message.content.endswith("</s>")
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello, how are you?"}],
temperature=1,
max_tokens=5,
metadata={"include_stop_str_in_output": False},
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert not response.choices[0].message.content.endswith("</s>")
def test_streaming_with_stop_str(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello, how are you?"}],
temperature=1,
max_tokens=5,
metadata={"include_stop_str_in_output": True},
stream=True,
)
# Assertions to check the response structure
last_token = ""
for chunk in response:
last_token = chunk.choices[0].delta.content
assert last_token == "</s>"
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello, how are you?"}],
temperature=1,
max_tokens=5,
metadata={"include_stop_str_in_output": False},
stream=True,
)
# Assertions to check the response structure
last_token = ""
for chunk in response:
last_token = chunk.choices[0].delta.content
assert last_token != "</s>"