Files
FastDeploy/fastdeploy/model_executor/layers/quantization/wint2.py
2025-06-29 23:29:37 +00:00

143 lines
5.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
from ..moe import FusedMoE
from . import get_quantization_config
from .quant_base import QuantConfigBase, QuantMethodBase
class WINT2Config(QuantConfigBase):
"""
Quantization config for wint8 linear and w4w2 MoE.
"""
def __init__(
self,
dense_quant_type: str,
dense_quant_granularity: str,
moe_quant_type: str,
moe_w4_quant_type: str,
moe_w4_quant_granularity: str,
moe_w4_quant_start_layer: int,
moe_w4_quant_end_layer: int,
moe_w2_quant_type: str,
moe_w2_quant_granularity: str,
moe_w2_quant_group_size: int,
moe_w2_quant_start_layer: int,
moe_w2_quant_end_layer: int,
) -> None:
super().__init__()
self.quant_max_bound = 0
self.quant_min_bound = 0
self.quant_round_type = 0
# wint2 quantization config
self.dense_quant_type = dense_quant_type
self.dense_quant_granularity = dense_quant_granularity
self.moe_quant_type = moe_quant_type
self.moe_w4_quant_type = moe_w4_quant_type
self.moe_w4_quant_granularity = moe_w4_quant_granularity
self.moe_w4_quant_start_layer = moe_w4_quant_start_layer
self.moe_w4_quant_end_layer = moe_w4_quant_end_layer
self.moe_w2_quant_type = moe_w2_quant_type
self.moe_w2_quant_granularity = moe_w2_quant_granularity
self.moe_w2_quant_group_size = moe_w2_quant_group_size
self.moe_w2_quant_start_layer = moe_w2_quant_start_layer
self.moe_w2_quant_end_layer = moe_w2_quant_end_layer
def name(self) -> str:
"""
Get the name of the quantization configuration.
Returns:
str: The name of the quantization configuration.
"""
return "wint2"
@classmethod
def from_config(cls, config: dict) -> "WINT2Config":
"""
Create a new instance of `WINT2Config` using the provided configuration dictionary.
Args:
config (dict): A dictionary containing the configuration parameters for the new instance.
Returns:
WINT2Config: The newly created instance of `WINT2Config`.
"""
dense_quant_type = config.get("dense_quant_config", "wint8")
dense_quant_granularity = config.get("dense_quant_granularity",
"per_channel")
moe_quant_config = config.get("moe_quant_config", {})
moe_quant_type = moe_quant_config.get("quant_type", "w4w2")
moe_w4_quant_config = moe_quant_config.get("moe_w4_quant_config", {})
moe_w4_quant_type = moe_w4_quant_config.get("quant_type",
"wint4")
moe_w4_quant_granularity = moe_w4_quant_config.get(
"quant_granularity", "per_channel")
moe_w4_quant_start_layer = moe_w4_quant_config.get(
"quant_start_layer", 0)
moe_w4_quant_end_layer = moe_w4_quant_config.get("quant_end_layer", 6)
moe_w2_quant_config = moe_quant_config.get("moe_w2_quant_config", {})
moe_w2_quant_type = moe_w2_quant_config.get("quant_type", "wint2")
moe_w2_quant_granularity = moe_w2_quant_config.get(
"quant_granularity", "pp_acc")
moe_w2_quant_group_size = moe_w2_quant_config.get(
"quant_group_size", 0)
moe_w2_quant_start_layer = moe_w2_quant_config.get(
"quant_start_layer", 0)
moe_w2_quant_end_layer = moe_w2_quant_config.get("quant_end_layer", 0)
return cls(
dense_quant_type,
dense_quant_granularity,
moe_quant_type,
moe_w4_quant_type,
moe_w4_quant_granularity,
moe_w4_quant_start_layer,
moe_w4_quant_end_layer,
moe_w2_quant_type,
moe_w2_quant_granularity,
moe_w2_quant_group_size,
moe_w2_quant_start_layer,
moe_w2_quant_end_layer,
)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
Get the quantization method associated with the given layer based on the current quantization configuration.
Args:
layer (Layer): The layer for which the quantization method should be retrieved.
Returns:
QuantMethodBase: The quantization method associated with the given layer.
"""
if isinstance(layer, FusedMoE):
if layer.layer_idx <= self.moe_w4_quant_end_layer:
return get_quantization_config(
self.moe_w4_quant_type).from_config(
{}).get_quant_method(layer)
else:
from fastdeploy.model_executor.layers.moe.fused_moe_wint2_backend import \
TritonWint2FusedMoeMethod
return TritonWint2FusedMoeMethod(self)
else:
return get_quantization_config(self.dense_quant_type).from_config(
{}).get_quant_method(layer)