Files
FastDeploy/fastdeploy/model_executor/layers/quantization/wfp8afp8.py
2025-06-29 23:29:37 +00:00

117 lines
3.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
from fastdeploy.model_executor.layers.quantization.ops import (
cutlass_scaled_mm, scaled_fp8_quant)
from fastdeploy.model_executor.layers.quantization.quant_base import (
QuantConfigBase, QuantMethodBase)
class WFP8AFP8Config(QuantConfigBase):
"""
Quantization config for weight and activation with FP8.
"""
def __init__(self, weight_scale_dict, act_scale_dict) -> None:
super().__init__()
self.weight_scale_dict = weight_scale_dict
self.act_scale_dict = act_scale_dict
self.quant_max_bound = 448
self.quant_min_bound = -448
self.quant_round_type = 1
def name(self) -> str:
"""
"""
return "wfp8afp8"
@classmethod
def from_config(cls, config: dict) -> "WFP8AFP8Config":
"""
"""
weight_scale_dict = config.get("weight_scale_dict", None)
act_scale_dict = config.get("act_scale_dict", None)
return cls(weight_scale_dict, act_scale_dict)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
"""
return WFP8AFP8LinearMethod(self)
class WFP8AFP8LinearMethod(QuantMethodBase):
"""
Weight and activation quantization method for linear layer with FP8
"""
def __init__(
self,
quant_config: WFP8AFP8Config,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
"""
"""
layer.linear_weight_shape.reverse()
layer.weight_dtype = "float8_e4m3fn"
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
self.skip_quant = False
layer.linear_weight_scale = layer.create_parameter(
shape=[1],
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_loaded_weights(self, layer, weights) -> None:
"""
"""
if self.skip_quant:
weight_tensor = weights.cast(layer._dtype)
layer.linear_weight.set_value(weight_tensor)
return
if weights.dtype != paddle.float8_e4m3fn:
self.use_per_token_if_dynamic = True
weight_tensor = weights.transpose([1, 0]).contiguous()
qweight, weight_scale = scaled_fp8_quant(
weight_tensor,
use_per_token_if_dynamic=False,
)
layer.linear_weight.copy_(qweight, False)
layer.linear_weight_scale.set_value(weight_scale)
def apply(self, layer, x):
"""
"""
if self.skip_quant:
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
return linear_out
if self.use_per_token_if_dynamic:
out_type = x.dtype
a_q, a_scales = scaled_fp8_quant(
x, use_per_token_if_dynamic=self.use_per_token_if_dynamic)
linear_out = cutlass_scaled_mm(a_q, layer.linear_weight, a_scales,
layer.linear_weight_scale, out_type,
layer.linear_bias)
else:
raise NotImplementedError
return linear_out