mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
117 lines
3.8 KiB
Python
117 lines
3.8 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.quantization.ops import (
|
|
cutlass_scaled_mm, scaled_fp8_quant)
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import (
|
|
QuantConfigBase, QuantMethodBase)
|
|
|
|
|
|
class WFP8AFP8Config(QuantConfigBase):
|
|
"""
|
|
Quantization config for weight and activation with FP8.
|
|
"""
|
|
|
|
def __init__(self, weight_scale_dict, act_scale_dict) -> None:
|
|
super().__init__()
|
|
self.weight_scale_dict = weight_scale_dict
|
|
self.act_scale_dict = act_scale_dict
|
|
self.quant_max_bound = 448
|
|
self.quant_min_bound = -448
|
|
self.quant_round_type = 1
|
|
|
|
def name(self) -> str:
|
|
"""
|
|
"""
|
|
return "wfp8afp8"
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "WFP8AFP8Config":
|
|
"""
|
|
"""
|
|
weight_scale_dict = config.get("weight_scale_dict", None)
|
|
act_scale_dict = config.get("act_scale_dict", None)
|
|
return cls(weight_scale_dict, act_scale_dict)
|
|
|
|
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
|
"""
|
|
"""
|
|
return WFP8AFP8LinearMethod(self)
|
|
|
|
|
|
class WFP8AFP8LinearMethod(QuantMethodBase):
|
|
"""
|
|
Weight and activation quantization method for linear layer with FP8
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: WFP8AFP8Config,
|
|
) -> None:
|
|
super().__init__()
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer):
|
|
"""
|
|
"""
|
|
layer.linear_weight_shape.reverse()
|
|
layer.weight_dtype = "float8_e4m3fn"
|
|
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
|
|
self.skip_quant = False
|
|
layer.linear_weight_scale = layer.create_parameter(
|
|
shape=[1],
|
|
dtype="float32",
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
def process_loaded_weights(self, layer, weights) -> None:
|
|
"""
|
|
"""
|
|
if self.skip_quant:
|
|
weight_tensor = weights.cast(layer._dtype)
|
|
layer.linear_weight.set_value(weight_tensor)
|
|
return
|
|
if weights.dtype != paddle.float8_e4m3fn:
|
|
self.use_per_token_if_dynamic = True
|
|
weight_tensor = weights.transpose([1, 0]).contiguous()
|
|
qweight, weight_scale = scaled_fp8_quant(
|
|
weight_tensor,
|
|
use_per_token_if_dynamic=False,
|
|
)
|
|
layer.linear_weight.copy_(qweight, False)
|
|
layer.linear_weight_scale.set_value(weight_scale)
|
|
|
|
def apply(self, layer, x):
|
|
"""
|
|
"""
|
|
if self.skip_quant:
|
|
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
|
|
return linear_out
|
|
if self.use_per_token_if_dynamic:
|
|
out_type = x.dtype
|
|
a_q, a_scales = scaled_fp8_quant(
|
|
x, use_per_token_if_dynamic=self.use_per_token_if_dynamic)
|
|
linear_out = cutlass_scaled_mm(a_q, layer.linear_weight, a_scales,
|
|
layer.linear_weight_scale, out_type,
|
|
layer.linear_bias)
|
|
else:
|
|
raise NotImplementedError
|
|
return linear_out
|