Files
FastDeploy/fastdeploy/input/ernie_processor.py
2025-07-18 19:43:19 +08:00

448 lines
18 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import numpy as np
from paddleformers.generation import GenerationConfig
from fastdeploy import envs
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
from fastdeploy.input.text_processor import BaseDataProcessor
from fastdeploy.utils import data_processor_logger
_SAMPLING_EPS = 1e-5
class ErnieProcessor(BaseDataProcessor):
"""
初始化模型实例。
Args:
model_name_or_path (str): 模型名称或路径。
Attributes:
model_name_or_path (str): 存储模型名称或路径。
decode_status (dict): 存储解码状态信息。
tokenizer (object): 存储分词器实例。
eos_token_ids (list): 存储结束符号的token ID列表。
eos_token_id_len (int): 存储结束符号的token ID列表的长度。
pad_token_id (int): 存储填充符号的token ID。
"""
def __init__(self, model_name_or_path, reasoning_parser_obj=None):
self.model_name_or_path = model_name_or_path
data_processor_logger.info(f"model_name_or_path: {model_name_or_path}")
self._init_config()
self.decode_status = dict()
self.thinking_parser_dict = dict()
self._load_tokenizer()
data_processor_logger.info(
f"tokenizer information: bos_token is {self.tokenizer.bos_token} \
{self.tokenizer.bos_token_id}, \
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
)
self.eos_token_ids = [self.tokenizer.eos_token_id]
self.eos_token_id_len = len(self.eos_token_ids)
self.pad_token_id = self.get_pad_id()
self.reasoning_parser = None
if reasoning_parser_obj:
self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
def _init_config(self):
self.use_hf_tokenizer = int(envs.FD_USE_HF_TOKENIZER) == 1
# Generation config
try:
self.generation_config = GenerationConfig.from_pretrained(
self.model_name_or_path)
except Exception as e:
data_processor_logger.warning(
f"Can't find generation config, so it will not use "
f"generation_config field in the model config, details={e}")
self.generation_config = None
def process_request(self, request, max_model_len=None, **kwargs):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
request = self._apply_default_parameters(request)
if request.get("eos_token_ids") is None or len(
request.eos_token_ids) == 0:
request.eos_token_ids = self.eos_token_ids
stop_sequences = request.get("stop", [])
if stop_sequences is not None and len(stop_sequences) != 0:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request.set("stop_token_ids", stop_seqs)
request.set("stop_seqs_len", stop_seqs_len)
if request.prompt_token_ids is None or len(
request.prompt_token_ids) == 0:
if request.prompt is None and request.messages is None:
raise ValueError(
f"The request should have `input_ids`, `text` or `messages`: {request}.")
if request.prompt is not None or not request.raw_request:
prompt = request.prompt if request.prompt is not None else request.messages[0]
prompt = prompt[0] if isinstance(prompt, list) else prompt
tokens = self.tokenizer.tokenize(prompt)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
request.prompt_token_ids = token_ids
data_processor_logger.info(f"req_id:{request.request_id}, tokens:{tokens}, token_ids: {token_ids}")
else:
request.prompt_token_ids = self.messages2ids(request.to_dict())
if max_model_len is not None and len(
request.prompt_token_ids) > max_model_len:
request.prompt_token_ids = request.prompt_token_ids[:
max_model_len -
1]
if request.get("max_tokens") is None:
request.set("max_tokens",
max(1, max_model_len - len(request.prompt_token_ids)))
if request.get("temperature") < _SAMPLING_EPS:
# zero temperature is equivalent to greedy sampling
request.set("temperature", 1)
data_processor_logger.info(f"Processed request {request}")
return request
def process_request_dict(self, request, max_model_len=None):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
request = self._apply_default_parameters(request)
if not request.get('eos_token_ids'):
request['eos_token_ids'] = self.eos_token_ids
# 处理stop_sequences
stop_sequences = request.get('stop', [])
if stop_sequences:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request['stop_token_ids'] = stop_seqs
request['stop_seqs_len'] = stop_seqs_len
# 处理prompt_token_ids
if not request.get('prompt_token_ids'):
if request.get('prompt') is None and request.get(
'messages') is None:
raise ValueError(
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
)
if request.get('prompt'):
prompt = request.get('prompt')
prompt = prompt[0] if isinstance(prompt, list) else prompt
tokens = self.tokenizer.tokenize(prompt)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
request['prompt_token_ids'] = token_ids
req_id = request.get("request_id", None)
data_processor_logger.info(
f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}"
)
else:
request['prompt_token_ids'] = self.messages2ids(request)
# 截断超过长度限制的prompt
if max_model_len is not None and len(
request['prompt_token_ids']) > max_model_len:
request['prompt_token_ids'] = request[
'prompt_token_ids'][:max_model_len - 1]
if request.get("max_tokens") is None:
request["max_tokens"] = max(
1, max_model_len - len(request['prompt_token_ids']))
if request.get("temperature") < _SAMPLING_EPS:
# zero temperature is equivalent to greedy sampling
request["temperature"] = 1
data_processor_logger.info(f"Processed request {request}")
return request
def process_response(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
req_id = response_dict.request_id
token_ids = response_dict.outputs.token_ids
response_dict.usage = {
"completion_tokens": response_dict.outputs.index + 1
}
if token_ids[-1] == self.tokenizer.eos_token_id:
token_ids = token_ids[:-1]
full_text = self.tokenizer.decode(token_ids)
if self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
full_text, response_dict)
response_dict.outputs.text = text
response_dict.outputs.reasoning_content = reasoning_content
else:
response_dict.outputs.text = full_text
data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
if response_dict.outputs.text == "" and \
response_dict.outputs.reasoning_content == "" and \
response_dict.outputs.tool_call_content == []:
return None
return response_dict
def process_response_dict(self, response_dict, stream, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
if stream:
return self.process_response_dict_streaming(
response_dict, **kwargs)
else:
return self.process_response_dict_normal(response_dict, **kwargs)
def process_response_dict_normal(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
token_ids = response_dict["outputs"]["token_ids"]
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
if token_ids[-1] == self.tokenizer.eos_token_id:
token_ids = token_ids[:-1]
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
if is_end:
full_text = previous_texts + delta_text
if self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
full_text, response_dict)
response_dict["outputs"]["text"] = text
response_dict["outputs"][
"reasoning_content"] = reasoning_content
else:
response_dict["outputs"]["text"] = full_text
data_processor_logger.info(
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
)
del self.decode_status[req_id]
return response_dict
def process_response_dict_streaming(self, response_dict, **kwargs):
"""
Preprocess the response streaming
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.get("enable_thinking")
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
token_ids = response_dict["outputs"]["token_ids"]
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
if token_ids[-1] == self.tokenizer.eos_token_id:
token_ids = token_ids[:-1]
delta_text, previous_token_ids, previous_texts = self.ids2tokens(
token_ids, req_id)
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
previous_texts, previous_texts + delta_text, delta_text,
previous_token_ids, previous_token_ids + token_ids, token_ids)
response_dict["outputs"]["text"] = text
response_dict["outputs"]["reasoning_content"] = reasoning_content
else:
response_dict["outputs"]["text"] = delta_text
if is_end:
data_processor_logger.info(
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
)
del self.decode_status[req_id]
return response_dict
def messages2ids(self, request_or_messages):
"""
Convert multi-turn messages into ID sequences.
Args:
request_or_messages: Either a request dict containing 'messages' field,
or a list of message dicts directly
Returns:
List of token IDs as strings (converted from token objects)
"""
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
spliced_message = self.tokenizer.apply_chat_template(
request_or_messages,
tokenize=False,
split_special_tokens=False,
add_special_tokens=False)
req_id = None
if isinstance(request_or_messages, dict):
req_id = request_or_messages.get("request_id", None)
tokens = self.tokenizer.tokenize(spliced_message)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(
f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
return token_ids
def ids2tokens(self, token_id, task_id):
"""
token ids to strings
Args:
token_ids (List[int]): token ids
task_id (str): task id
Returns:
List[str]: strings
"""
if task_id not in self.decode_status:
# prefix offset & read offset & history token ids & history token strings
self.decode_status[task_id] = [0, 0, [], ""]
prefix_offset = self.decode_status[task_id][0]
read_offset = self.decode_status[task_id][1]
previous_token_ids = self.decode_status[task_id][2]
previous_texts = self.decode_status[task_id][3]
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
previous_token_ids + token_id, prefix_offset, read_offset)
self.decode_status[task_id][0] = prefix_offset
self.decode_status[task_id][1] = read_offset
self.decode_status[task_id][2] += token_id
self.decode_status[task_id][3] += decode_str
return decode_str, previous_token_ids, previous_texts
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
vocab_file_names = [
"tokenizer.model", "spm.model", "ernie_token_100k.model"
]
for i in range(len(vocab_file_names)):
if os.path.exists(
os.path.join(self.model_name_or_path,
vocab_file_names[i])):
ErnieBotTokenizer.resource_files_names[
"vocab_file"] = vocab_file_names[i]
break
self.tokenizer = ErnieBotTokenizer.from_pretrained(
self.model_name_or_path)
def get_pad_id(self):
"""
get pad_token_id, if not pad_token_id, use eos_token
Returns:
int: pad_token_id
"""
# if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
# return self.tokenizer.eos_token
return self.tokenizer.pad_token_id
def pad_batch_data(self,
insts,
pad_id=0,
return_seq_len=False,
return_array=True,
pad_style="right"):
"""Pad the instances to the max sequence length in batch."""
if len(insts) == 0:
padded_insts = np.array([[]],
dtype=np.int64) if return_array else [[]]
if return_seq_len:
seq_len = np.array([], dtype=np.int64) if return_array else []
return padded_insts, seq_len
return padded_insts
max_len = max(map(len, insts))
if pad_style == "left":
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
for inst in insts]
else:
padded_insts = [
list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
]
if return_array:
padded_insts = np.array(padded_insts,
dtype=np.int64).reshape([-1, max_len])
if return_seq_len:
seq_len = [len(inst) for inst in insts]
if return_array:
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
return padded_insts, seq_len
return padded_insts
def update_stop_seq(self, stop_sequences):
"""
Update stop sequences from request.
"""
stop_seqs = []
for seq in stop_sequences:
if seq != self.tokenizer.eos_token_id:
stop_seqs.append(
self.tokenizer.convert_tokens_to_ids(
self.tokenizer.tokenize(seq)))
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
pad_id=-1,
return_seq_len=True,
return_array=False)
data_processor_logger.debug(
f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
return stop_seqs, stop_seqs_len
def process_logprob_response(self, token_ids, **kwargs):
full_text = self.tokenizer.decode(token_ids, **kwargs)
return full_text