Files
FastDeploy/python/fastdeploy/vision/evaluation/segmentation.py
huangjianhui 312e1b097d [Other]Refactor PaddleSeg with preprocessor && postprocessor && support batch (#639)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-28 15:50:12 +08:00

93 lines
3.7 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from tqdm import trange
import numpy as np
import collections
import os
import math
import time
def eval_segmentation(model, data_dir, batch_size=1):
import cv2
from .utils import Cityscapes
from .utils import f1_score, calculate_area, mean_iou, accuracy, kappa
assert os.path.isdir(
data_dir), "The image_file_path:{} is not a directory.".format(
data_dir)
eval_dataset = Cityscapes(dataset_root=data_dir, mode="val")
file_list = eval_dataset.file_list
image_num = eval_dataset.num_samples
num_classes = eval_dataset.num_classes
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
conf_mat_all = []
twenty_percent_image_num = math.ceil(image_num * 0.2)
start_time = 0
end_time = 0
average_inference_time = 0
im_list = []
label_list = []
for image_label_path, i in zip(file_list,
trange(
image_num, desc="Inference Progress")):
if i == twenty_percent_image_num:
start_time = time.time()
im = cv2.imread(image_label_path[0])
label = cv2.imread(image_label_path[1], cv2.IMREAD_GRAYSCALE)
label_list.append(label)
if batch_size == 1:
result = model.predict(im)
results = [result]
else:
im_list.append(im)
# If the batch_size is not satisfied, the remaining pictures are formed into a batch
if (i + 1) % batch_size != 0 and i != image_num - 1:
continue
results = model.batch_predict(im_list)
if i == image_num - 1:
end_time = time.time()
average_inference_time = round(
(end_time - start_time) /
(image_num - twenty_percent_image_num), 4)
for result, label in zip(results, label_list):
pred = np.array(result.label_map).reshape(result.shape[0],
result.shape[1])
intersect_area, pred_area, label_area = calculate_area(pred, label,
num_classes)
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
im_list.clear()
label_list.clear()
class_iou, miou = mean_iou(intersect_area_all, pred_area_all,
label_area_all)
class_acc, oacc = accuracy(intersect_area_all, pred_area_all)
kappa_res = kappa(intersect_area_all, pred_area_all, label_area_all)
category_f1score = f1_score(intersect_area_all, pred_area_all,
label_area_all)
eval_metrics = collections.OrderedDict(
zip([
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
'category_F1-score', 'average_inference_time(s)'
], [
miou, class_iou, oacc, class_acc, kappa_res, category_f1score,
average_inference_time
]))
return eval_metrics