mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* Support PETR v2 * make petrv2 precision equal with the origin repo * delete extra func * modify review problem * delete visualize * Update README_CN.md * Update README.md * Update README_CN.md * fix build problem * delete external variable and function --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
197 lines
6.6 KiB
C++
197 lines
6.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/perception/paddle3d/petr/preprocessor.h"
|
|
#include <iostream>
|
|
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace perception {
|
|
|
|
PetrPreprocessor::PetrPreprocessor(const std::string& config_file) {
|
|
config_file_ = config_file;
|
|
FDASSERT(BuildPreprocessPipelineFromConfig(),
|
|
"Failed to create Paddle3DDetPreprocessor.");
|
|
initialized_ = true;
|
|
}
|
|
|
|
bool PetrPreprocessor::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// read for preprocess
|
|
bool has_permute = false;
|
|
for (const auto& op : cfg["Preprocess"]) {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
if (op_name == "NormalizeImage") {
|
|
auto mean = op["mean"].as<std::vector<float>>();
|
|
auto std = op["std"].as<std::vector<float>>();
|
|
bool is_scale = true;
|
|
if (op["is_scale"]) {
|
|
is_scale = op["is_scale"].as<bool>();
|
|
}
|
|
std::string norm_type = "mean_std";
|
|
if (op["norm_type"]) {
|
|
norm_type = op["norm_type"].as<std::string>();
|
|
}
|
|
if (norm_type != "mean_std") {
|
|
std::fill(mean.begin(), mean.end(), 0.0);
|
|
std::fill(std.begin(), std.end(), 1.0);
|
|
}
|
|
mean_ = mean;
|
|
std_ = std;
|
|
} else if (op_name == "Resize") {
|
|
bool keep_ratio = op["keep_ratio"].as<bool>();
|
|
auto target_size = op["target_size"].as<std::vector<int>>();
|
|
int interp = op["interp"].as<int>();
|
|
FDASSERT(target_size.size() == 2,
|
|
"Require size of target_size be 2, but now it's %lu.",
|
|
target_size.size());
|
|
if (!keep_ratio) {
|
|
int width = target_size[0];
|
|
int height = target_size[1];
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
|
|
} else {
|
|
int min_target_size = std::min(target_size[0], target_size[1]);
|
|
int max_target_size = std::max(target_size[0], target_size[1]);
|
|
std::vector<int> max_size;
|
|
if (max_target_size > 0) {
|
|
max_size.push_back(max_target_size);
|
|
max_size.push_back(max_target_size);
|
|
}
|
|
processors_.push_back(std::make_shared<ResizeByShort>(
|
|
min_target_size, interp, true, max_size));
|
|
}
|
|
} else if (op_name == "Permute") {
|
|
// Do nothing, do permute as the last operation
|
|
has_permute = true;
|
|
continue;
|
|
} else {
|
|
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
if (!disable_permute_) {
|
|
if (has_permute) {
|
|
// permute = cast<float> + HWC2CHW
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
}
|
|
|
|
input_k_data_ = cfg["k_data"].as<std::vector<float>>();
|
|
return true;
|
|
}
|
|
|
|
bool PetrPreprocessor::Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs) {
|
|
if (image_batch->mats->empty()) {
|
|
FDERROR << "The size of input images should be greater than 0."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!initialized_) {
|
|
FDERROR << "The preprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
// There are 3 outputs, image, k_data, timestamp
|
|
outputs->resize(3);
|
|
int batch = static_cast<int>(image_batch->mats->size());
|
|
|
|
// Allocate memory for k_data
|
|
(*outputs)[1].Resize({1, batch, 4, 4}, FDDataType::FP32);
|
|
|
|
// Allocate memory for image_data
|
|
(*outputs)[0].Resize({1, batch, 3, 320, 800}, FDDataType::FP32);
|
|
|
|
// Allocate memory for timestamp
|
|
(*outputs)[2].Resize({1, batch}, FDDataType::FP32);
|
|
|
|
auto* image_ptr = reinterpret_cast<float*>((*outputs)[0].MutableData());
|
|
|
|
auto* k_data_ptr = reinterpret_cast<float*>((*outputs)[1].MutableData());
|
|
|
|
auto* timestamp_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
|
|
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
for (size_t j = 0; j < processors_.size(); ++j) {
|
|
if (!(*(processors_[j].get()))(mat)) {
|
|
FDERROR << "Failed to processs image:" << i << " in "
|
|
<< processors_[j]->Name() << "." << std::endl;
|
|
return false;
|
|
}
|
|
if (processors_[j]->Name() == "Resize") {
|
|
// crop and normalize after Resize
|
|
auto img = *(mat->GetOpenCVMat());
|
|
cv::Mat crop_img = img(cv::Range(130, 450), cv::Range(0, 800));
|
|
Normalize(&crop_img, mean_, std_, scale_);
|
|
FDMat fd_mat = WrapMat(crop_img);
|
|
image_batch->mats->at(i) = fd_mat;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < batch / 2 * 4 * 4; ++i) {
|
|
input_k_data_.emplace_back(input_k_data_[i]);
|
|
}
|
|
|
|
memcpy(k_data_ptr, input_k_data_.data(), batch * 16 * sizeof(float));
|
|
|
|
std::vector<float> timestamp(batch, 0.0f);
|
|
for (int i = batch / 2; i < batch; ++i) {
|
|
timestamp[i] = 1.0f;
|
|
}
|
|
memcpy(timestamp_ptr, timestamp.data(), batch * sizeof(float));
|
|
|
|
FDTensor* tensor = image_batch->Tensor();
|
|
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
|
|
tensor->Data(), tensor->device,
|
|
tensor->device_id);
|
|
return true;
|
|
}
|
|
|
|
void PetrPreprocessor::Normalize(cv::Mat* im, const std::vector<float>& mean,
|
|
const std::vector<float>& std, float& scale) {
|
|
if (scale) {
|
|
(*im).convertTo(*im, CV_32FC3, scale);
|
|
}
|
|
for (int h = 0; h < im->rows; h++) {
|
|
for (int w = 0; w < im->cols; w++) {
|
|
im->at<cv::Vec3f>(h, w)[0] =
|
|
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) / std[0];
|
|
im->at<cv::Vec3f>(h, w)[1] =
|
|
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) / std[1];
|
|
im->at<cv::Vec3f>(h, w)[2] =
|
|
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) / std[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace perception
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|