Files
FastDeploy/fastdeploy/vision/perception/paddle3d/petr/postprocessor.cc
CoolCola e3b285c762 [Model] Support Paddle3D PETR v2 model (#1863)
* Support PETR v2

* make petrv2 precision equal with the origin repo

* delete extra func

* modify review problem

* delete visualize

* Update README_CN.md

* Update README.md

* Update README_CN.md

* fix build problem

* delete external variable and function

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-05-19 10:45:36 +08:00

64 lines
2.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/perception/paddle3d/petr/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace perception {
PetrPostprocessor::PetrPostprocessor() {}
bool PetrPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<PerceptionResult>* results) {
results->resize(1);
(*results)[0].Clear();
(*results)[0].Reserve(tensors[0].shape[0]);
if (tensors[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data_0 = reinterpret_cast<const float*>(tensors[0].Data());
auto result = &(*results)[0];
for (int i = 0; i < tensors[0].shape[0] * tensors[0].shape[1]; i += 9) {
// item 1 ~ 3 : box3d w, h, l
// item 4 ~ 6 : box3d bottom center x, y, z
// item 7 : box3d yaw angle
// item 8 ~ 9 : speed x,y
std::vector<float> vec(data_0 + i, data_0 + i + 9);
result->boxes.emplace_back(std::array<float, 7>{
0, 0, 0, 0, vec[0], vec[1], vec[2]});
result->center.emplace_back(std::array<float, 3>{vec[3], vec[4], vec[5]});
result->yaw_angle.push_back(vec[6]);
result->velocity.push_back(std::array<float, 3>{vec[7], vec[8]});
}
const float* data_1 = reinterpret_cast<const float*>(tensors[1].Data());
for (int i = 0; i < tensors[1].shape[0]; i += 1) {
std::vector<float> vec(data_1 + i, data_1 + i + 1);
result->scores.push_back(vec[0]);
}
const long long* data_2 = reinterpret_cast<const long long*>(tensors[2].Data());
for (int i = 0; i < tensors[2].shape[0]; i++) {
std::vector<long long> vec(data_2 + i, data_2 + i + 1);
result->label_ids.push_back(vec[0]);
}
return true;
}
} // namespace perception
} // namespace vision
} // namespace fastdeploy