Files
FastDeploy/examples/vision/perception/paddle3d/petr/cpp/infer.cc
CoolCola e3b285c762 [Model] Support Paddle3D PETR v2 model (#1863)
* Support PETR v2

* make petrv2 precision equal with the origin repo

* delete extra func

* modify review problem

* delete visualize

* Update README_CN.md

* Update README.md

* Update README_CN.md

* fix build problem

* delete external variable and function

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-05-19 10:45:36 +08:00

85 lines
2.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& model_dir, const std::string& images_dir,
const fastdeploy::RuntimeOption& option) {
auto model_file = model_dir + sep + "petrv2_inference.pdmodel";
auto params_file = model_dir + sep + "petrv2_inference.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
fastdeploy::vision::EnableFlyCV();
auto model = fastdeploy::vision::perception::Petr(
model_file, params_file, config_file, option,
fastdeploy::ModelFormat::PADDLE);
assert(model.Initialized());
std::vector<cv::Mat> im_batch;
for (int i = 0; i < 12; i++) {
auto image_file = images_dir + sep + "image" + std::to_string(i) + ".png";
auto im = cv::imread(image_file);
im_batch.emplace_back(im);
}
std::vector<fastdeploy::vision::PerceptionResult> res;
if (!model.BatchPredict(im_batch, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res[0].Str() << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/paddle_model"
"path/to/image "
"run_option, "
"e.g ./infer_demo ./petr ./00000.png 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with paddle-trt"
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
if (std::atoi(argv[3]) == 0) {
option.UseCpu();
} else if (std::atoi(argv[3]) == 1) {
option.UseGpu();
} else if (std::atoi(argv[3]) == 2) {
option.UseGpu();
option.UseTrtBackend();
option.EnablePaddleToTrt();
option.SetTrtInputShape("images", {1, 3, 384, 1280});
option.SetTrtInputShape("down_ratios", {1, 2});
option.SetTrtInputShape("trans_cam_to_img", {1, 3, 3});
option.SetTrtInputData("trans_cam_to_img",
{721.53771973, 0., 609.55932617, 0., 721.53771973,
172.85400391, 0, 0, 1});
option.EnablePaddleTrtCollectShape();
}
option.UsePaddleBackend();
std::string model_dir = argv[1];
std::string test_image = argv[2];
InitAndInfer(model_dir, test_image, option);
return 0;
}