Files
FastDeploy/fastdeploy/model_executor/graph_optimization/graph_optimization_backend.py
RAM 03a74995b8
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
Clear dead code And supplementary notes (#2757)
* 1.supplementary notes 2.delete dead code

* fix bug of forward meta

* Global modification of forward meta

* fix vl model_runner bug
2025-07-09 16:17:34 +08:00

68 lines
2.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Callable, Optional
from paddle.jit.dy2static.utils import Backend
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend import \
CudaGraphPiecewiseBackend
class GraphOptBackend:
"""
Integrated various graph optimization functions, including dynamic graph to static graph conversion,
CINN compilation optimization, CudaGraph, and so on.
"""
fd_config: FDConfig
cudagraph_piecewise_backend: Optional[CudaGraphPiecewiseBackend] = None
def __init__(self, runnable: Callable, fd_config: FDConfig):
self.runnable = runnable
self.fd_config = fd_config
self.max_captre_batch = fd_config.graph_opt_config.cudagraph_capture_sizes[
0]
if self.fd_config.graph_opt_config.graph_opt_level > 0:
# 1. Prepare cuda grpah input buffers (contain output of subgraphs)
# 2. Convert dynamic grpah to static graph
from paddle.jit import sot
backend = (Backend.CINN
if self.fd_config.graph_opt_config.graph_opt_level > 1
else Backend.PHI)
self.runnable = sot.symbolic_translate(self.runnable,
training=False,
backend=backend)
def __call__(self, **kwargs):
if not self.fd_config.graph_opt_config.use_cudagraph:
return self.runnable(**kwargs)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
fd_config=self.fd_config, runnable=self.runnable)
assert kwargs["forward_meta"].ids_remove_padding is not None
batch_size = kwargs["forward_meta"].ids_remove_padding.shape[0]
if ((not kwargs["forward_meta"].step_use_cudagraph)
or (batch_size > self.max_captre_batch)):
return self.runnable(**kwargs)
else:
return self.cudagraph_piecewise_backend.__call__(**kwargs)