mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			106 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| void CpuInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void GpuInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void TrtInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UseTrtBackend();
 | |
|   option.SetTrtInputShape("images", {1, 3, 640, 640});
 | |
|   auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
 | |
|                  "e.g ./infer_model ./yolov5.onnx ./test.jpeg 0"
 | |
|               << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with gpu and use tensorrt backend."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   if (std::atoi(argv[3]) == 0) {
 | |
|     CpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 2) {
 | |
|     TrtInfer(argv[1], argv[2]);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |