Files
FastDeploy/fastdeploy/spec_decode/mtp.py
2025-09-05 23:06:57 +08:00

733 lines
32 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
from typing import List
import numpy as np
import paddle
from fastdeploy.engine.request import Request
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
AttentionBackend,
)
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import MTPSampler
from fastdeploy.model_executor.ops.gpu import (
draft_model_postprocess,
draft_model_preprocess,
draft_model_update,
eagle_get_hidden_states,
eagle_get_self_hidden_states,
hybrid_mtp_ngram,
mtp_save_first_token,
mtp_step_paddle,
share_external_data,
)
from fastdeploy.model_executor.pre_and_post_process import pre_process, rebuild_padding
from .base import Proposer
class MTPProposer(Proposer):
"""
Proposer for Multi-Token-Prediction(MTP)
"""
def __init__(self, cfg, main_model, local_rank, device_id, main_model_inputs):
super().__init__(cfg)
self.num_main_model_layers = self.model_config.num_hidden_layers
self.local_rank = local_rank
self.device_id = device_id
self._update_cfg(main_model)
self._load_model()
self.main_model_inputs = main_model_inputs
self.mtp_strategy = self.speculative_config.mtp_strategy
self.hybrid_mode = self.mtp_strategy == "with_ngram" and self.max_draft_token_num > self.num_model_steps
# [mixed, prefill, decoder]
self.role = "mixed"
self.sampler = MTPSampler(cfg)
self._init_model_inputs()
self.attn_backends: list[AttentionBackend] = []
self._initialize_attn_backend()
def _update_cfg(self, main_model):
"""
Update config for MTP from global config
"""
self.model_config.architectures[0] = "Ernie4_5_MTPForCausalLM"
self.speculative_config.sharing_model = main_model
self.model_config.num_hidden_layers = 1
self.model_config.model = self.speculative_config.model
self.model_config.pretrained_config.prefix_name = "ernie.mtp_block"
if self.speculative_config.quantization != "":
self.model_config.quantization = self.speculative_config.quantization
self.model_config.start_layer_index = self.num_main_model_layers
self.speculative_config.model_type = "mtp"
def _load_model(self):
"""
Load MTP Layer
"""
from fastdeploy.model_executor.model_loader import get_model_loader
model_loader = get_model_loader(load_config=self.cfg.load_config)
self.model = model_loader.load_model(fd_config=self.cfg)
def dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int):
"""Set dummy prefill inputs to model_inputs"""
max_dec_len = expected_decode_len + 1
self.num_gpu_blocks = self.parallel_config.total_block_num
self.initialize_kv_cache()
full_length = min(
num_tokens // batch_size,
self.parallel_config.max_model_len - max_dec_len,
)
input_length = int(full_length * self.cache_config.kv_cache_ratio)
block_num = (
input_length + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
for i in range(batch_size):
idx = i
self.model_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.model_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
self.seq_lens_this_time_buffer[idx : idx + 1] = input_length
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
self.model_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.model_inputs["step_idx"][idx : idx + 1] = 0
self.model_inputs["max_dec_len"][idx : idx + 1] = max_dec_len
self.model_inputs["stop_flags"][idx : idx + 1] = False
self.model_inputs["encoder_block_lens"][idx : idx + 1] = block_num
self.model_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
idx * block_num, (idx + 1) * block_num, 1
)
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def initialize_kv_cache(self):
"""
Initialize kv cache
"""
# prompt cache
self.cache_kvs = {}
cache_type = self.parallel_config.dtype
kv_cache_quant_type = None
if (
self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_type = "uint8"
kv_cache_quant_type = self.quant_config.kv_cache_quant_type
# Get kv cache shape
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
max_num_blocks=self.num_gpu_blocks, kv_cache_quant_type=kv_cache_quant_type
)
if not self.parallel_config.do_profile and (
self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"
):
cache_kvs_list = []
for i in range(
self.num_main_model_layers,
self.num_main_model_layers + self.model_config.num_hidden_layers,
):
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache_name = f"key_caches_{i}_rank{self.local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{self.local_rank}.device{self.device_id}"
key_cache = share_external_data(key_cache, key_cache_name, kv_cache_shape)
cache_kvs_list.append(key_cache)
value_cache = paddle.empty(shape=[], dtype=cache_type)
value_cache = share_external_data(value_cache, val_cache_name, kv_cache_shape)
cache_kvs_list.append(value_cache)
self.model_inputs["caches"] = cache_kvs_list
else:
for i in range(self.model_config.num_hidden_layers):
self.cache_kvs[f"key_caches_{i}"] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
dtype=cache_type,
)
self.cache_kvs[f"value_caches_{i}"] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
dtype=cache_type,
)
self.model_inputs["caches"] = list(self.cache_kvs.values())
for value in self.cache_kvs.values():
del value
paddle.device.cuda.empty_cache()
def _initialize_attn_backend(
self,
) -> None:
"""
Initialize attention backends and forward metadata
"""
assert len(self.attn_backends) == 0
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
self.model_config.kv_num_heads = max(
1,
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size,
)
head_dim = self.model_config.head_dim
# Initialize AttentionBackend buffers
encoder_block_shape_q = 64
decoder_block_shape_q = 16
self.model_inputs["decoder_batch_ids"] = paddle.zeros_like(self.main_model_inputs["decoder_batch_ids"])
self.model_inputs["decoder_tile_ids_per_batch"] = paddle.zeros_like(
self.main_model_inputs["decoder_tile_ids_per_batch"]
)
self.model_inputs["decoder_num_blocks_cpu"] = paddle.zeros_like(
self.main_model_inputs["decoder_num_blocks_cpu"]
).pin_memory()
self.model_inputs["max_len_tensor_cpu"] = paddle.zeros_like(self.main_model_inputs["max_len_tensor_cpu"]).cpu()
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(
self.cfg,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=head_dim,
encoder_block_shape_q=encoder_block_shape_q,
decoder_block_shape_q=decoder_block_shape_q,
)
if attn_backend is None:
raise NotImplementedError(
"Attention backend which you specified is not supported, please set FD_ATTENTION_BACKEND correctly."
)
self.attn_backends.append(attn_backend)
def clear_dummy_input(self):
"""
Clear allocated cacheKV
"""
del self.model_inputs["caches"]
if self.forward_meta is not None:
del self.forward_meta.caches
def update_block_num(self, num_gpu_blocks) -> None:
"""
Update block num by theoretical calculation
"""
self.main_model_num_gpu_blocks = num_gpu_blocks
self.num_gpu_blocks = int(num_gpu_blocks * self.speculative_config.num_gpu_block_expand_ratio)
if not (self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"):
self.initialize_kv_cache()
# Reset free list
free_list = list(
range(
self.num_gpu_blocks - 1,
int(self.main_model_num_gpu_blocks * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(free_list)
self.model_inputs.update(
{
"free_list": paddle.to_tensor(free_list, dtype="int32"),
"free_list_len": paddle.full([1], self.free_list_len, dtype="int32"),
}
)
self.parallel_config.do_profile = False
def _init_model_inputs(self):
"""
Init model inputs
"""
self.model_inputs = {}
# Same shape/dytpe with base model
self.model_inputs["block_tables"] = paddle.clone(self.main_model_inputs["block_tables"])
self.model_inputs["input_ids"] = paddle.clone(self.main_model_inputs["input_ids"])
self.seq_lens_this_time_buffer = paddle.clone(self.main_model_inputs["seq_lens_this_time"])
self.model_inputs["input_ids_cpu"] = paddle.full(
shape=[self.max_num_seqs, self.parallel_config.max_model_len],
fill_value=-1,
dtype="int64",
).cpu()
self.model_inputs["seq_lens_encoder"] = paddle.clone(self.main_model_inputs["seq_lens_encoder"])
self.model_inputs["seq_lens_decoder"] = paddle.clone(self.main_model_inputs["seq_lens_decoder"])
self.model_inputs["step_idx"] = paddle.clone(self.main_model_inputs["step_idx"])
self.model_inputs["stop_flags"] = paddle.clone(self.main_model_inputs["stop_flags"])
self.model_inputs["stop_nums"] = paddle.clone(self.main_model_inputs["stop_nums"])
self.model_inputs["not_need_stop"] = paddle.to_tensor([False], dtype="bool", place="cpu")
self.model_inputs["pre_ids"] = paddle.clone(self.main_model_inputs["pre_ids"])
self.model_inputs["ids_remove_padding"] = paddle.clone(self.main_model_inputs["ids_remove_padding"])
self.model_inputs["batch_id_per_token"] = paddle.clone(self.main_model_inputs["batch_id_per_token"])
self.model_inputs["cu_seqlens_q"] = paddle.clone(self.main_model_inputs["cu_seqlens_q"])
self.model_inputs["cu_seqlens_k"] = paddle.clone(self.main_model_inputs["cu_seqlens_k"])
self.model_inputs["decoder_batch_ids"] = paddle.clone(self.main_model_inputs["decoder_batch_ids"])
self.model_inputs["decoder_tile_ids_per_batch"] = paddle.clone(
self.main_model_inputs["decoder_tile_ids_per_batch"]
)
tmp_position_ids = paddle.arange(self.parallel_config.max_model_len).reshape((1, -1))
self.model_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=tmp_position_ids,
base=self.model_config.rope_theta,
model_config=self.model_config,
)
# self.model_inputs["caches"] = self.cache_kvs
# Inherit generation hyperparameters from the main model for consistency
self.model_inputs["top_p"] = self.main_model_inputs["top_p"]
self.model_inputs["top_k"] = self.main_model_inputs["top_k"]
self.model_inputs["temperature"] = self.main_model_inputs["temperature"]
self.model_inputs["eos_token_id"] = self.main_model_inputs["eos_token_id"]
self.model_inputs["penalty_score"] = self.main_model_inputs["penalty_score"]
self.model_inputs["frequency_score"] = self.main_model_inputs["frequency_score"]
self.model_inputs["presence_score"] = self.main_model_inputs["presence_score"]
self.model_inputs["infer_seed"] = self.main_model_inputs["infer_seed"]
self.model_inputs["max_dec_len"] = self.main_model_inputs["max_dec_len"]
self.model_inputs["min_dec_len"] = self.main_model_inputs["min_dec_len"]
self.model_inputs["bad_tokens"] = self.main_model_inputs["bad_tokens"]
# Integrate the updated results in model forward
self.model_inputs["base_model_draft_tokens"] = self.main_model_inputs["draft_tokens"]
self.model_inputs["substep"] = 0
# Declare AttentionBackend buffers
self.model_inputs["decoder_batch_ids"] = None
self.model_inputs["decoder_tile_ids_per_batch"] = None
self.model_inputs["decoder_num_blocks_cpu"] = None # Pinning Memory
self.model_inputs["max_len_tensor_cpu"] = None # CPU
# Input tokens
self.model_inputs["draft_tokens"] = paddle.full(
shape=[self.max_num_seqs, self.max_draft_token_num + 1], fill_value=-1, dtype="int64"
)
self.model_inputs["encoder_block_lens"] = paddle.clone(self.main_model_inputs["encoder_block_lens"])
self.free_list = list(
range(
self.parallel_config.total_block_num - 1,
int(self.parallel_config.total_block_num * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(self.free_list)
self.model_inputs["free_list"] = paddle.to_tensor(self.free_list, dtype="int32")
self.model_inputs["free_list_len"] = paddle.full(shape=[1], fill_value=self.free_list_len, dtype="int32")
self.model_inputs["batch_drop"] = paddle.full(shape=[self.max_num_seqs, 1], fill_value=False, dtype="bool")
self.model_inputs["used_list_len"] = paddle.full(shape=[self.max_num_seqs], fill_value=0, dtype="int32")
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.full_like(
self.main_model_inputs["seq_lens_this_time"], fill_value=-1, dtype="int32"
)
self.input_ids_len = paddle.zeros(shape=[self.max_num_seqs, 1], dtype="int64").cpu()
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int):
"""
Process inputs for prefill tasks and insert it to model_inputs buffer
"""
# NOTE: Lazy initialize kv cache
if "caches" not in self.model_inputs:
self.initialize_kv_cache()
# TODO:Init role in initialize process
if req_dicts[-1].disaggregate_info is not None:
if req_dicts[-1].disaggregate_info["role"] == "prefill":
self.role = "prefill"
os.environ["PREFILL_NODE_ONE_STEP_STOP"] = "1"
elif req_dicts[-1].disaggregate_info["role"] == "decode":
self.role = "decode"
else:
self.role = "mixed"
req_len = len(req_dicts)
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
length = len(request.prompt_token_ids)
self.input_ids_len[idx] = length - 1
if req_dicts[i].disaggregate_info is not None and req_dicts[i].disaggregate_info["role"] == "decode":
length = len(request.prompt_token_ids)
if length > 1:
self.model_inputs["input_ids"][idx : idx + 1, : length - 1] = self.target_model_inputs[
"input_ids"
][idx : idx + 1, 1:length]
self.model_inputs["input_ids_cpu"][idx : idx + 1, : length - 1] = np.array(
request.prompt_token_ids
)[1:]
self.model_inputs["pre_ids"][idx : idx + 1] = request.prompt_token_ids[-1]
prefill_token_num = self.max_draft_token_num + 1
self.model_inputs["draft_tokens"][idx : idx + 1, 0:1] = paddle.to_tensor(
request.draft_token_ids[1:2], dtype="int64"
)
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.model_inputs["seq_lens_decoder"][idx : idx + 1] = length
self.seq_lens_this_time_buffer[idx : idx + 1] = prefill_token_num
self.model_inputs["stop_flags"][idx : idx + 1] = False
self.model_inputs["batch_drop"][idx : idx + 1] = False
self.model_inputs["step_idx"][idx : idx + 1] = 1
encoder_block_num = len(request.block_tables)
self.model_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.model_inputs["block_tables"][idx : idx + 1, :] = -1
self.model_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
else:
length = len(request.prompt_token_ids)
if length > 1:
self.model_inputs["input_ids"][idx : idx + 1, : length - 1] = self.main_model_inputs["input_ids"][
idx : idx + 1, 1:length
]
self.model_inputs["input_ids_cpu"][idx : idx + 1, : length - 1] = np.array(
request.prompt_token_ids
)[1:]
self.model_inputs["pre_ids"][idx : idx + 1] = -1
self.model_inputs["step_idx"][idx : idx + 1] = 0
if self.cache_config.enable_chunked_prefill:
token_chunk_size = request.prefill_chunk_info[0]
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.seq_lens_this_time_buffer[idx : idx + 1] = token_chunk_size
else:
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.seq_lens_this_time_buffer[idx : idx + 1] = length
self.model_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.model_inputs["stop_flags"][idx : idx + 1] = False
self.model_inputs["batch_drop"][idx : idx + 1] = False
encoder_block_num = len(request.get("block_tables"))
self.model_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.model_inputs["block_tables"][idx : idx + 1, :] = -1
self.model_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.get("block_tables"), dtype="int32"
)
self.model_inputs["not_need_stop"][0] = True
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
def _initialize_forward_meta(self):
"""
Initialize forward meta and attention meta data
"""
# Initialize forward meta
self.forward_meta = ForwardMeta(
input_ids=self.model_inputs["input_ids"],
ids_remove_padding=self.model_inputs["ids_remove_padding"],
rotary_embs=self.model_inputs["rope_emb"],
attn_backend=self.attn_backends[0],
decoder_batch_ids=self.model_inputs["decoder_batch_ids"],
decoder_tile_ids_per_batch=self.model_inputs["decoder_tile_ids_per_batch"],
decoder_num_blocks_cpu=self.model_inputs["decoder_num_blocks_cpu"],
max_len_tensor_cpu=self.model_inputs["max_len_tensor_cpu"],
seq_lens_encoder=self.model_inputs["seq_lens_encoder"],
seq_lens_decoder=self.model_inputs["seq_lens_decoder"],
seq_lens_this_time=self.model_inputs["seq_lens_this_time"],
batch_id_per_token=self.model_inputs["batch_id_per_token"],
cu_seqlens_q=self.model_inputs["cu_seqlens_q"],
cu_seqlens_k=self.model_inputs["cu_seqlens_k"],
block_tables=self.model_inputs["block_tables"],
caches=self.model_inputs["caches"],
)
# Initialzie attention meta data
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
def _prepare_inputs(self, full_hidden_states):
"""
Prepare MTP inputs
"""
draft_model_preprocess(
self.model_inputs["draft_tokens"],
self.model_inputs["input_ids"],
self.model_inputs["stop_flags"],
self.model_inputs["seq_lens_this_time"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
self.model_inputs["step_idx"],
self.model_inputs["not_need_stop"],
self.model_inputs["batch_drop"],
self.model_inputs["pre_ids"],
self.main_model_inputs["accept_tokens"],
self.main_model_inputs["accept_num"],
self.main_model_inputs["seq_lens_this_time"],
self.main_model_inputs["seq_lens_encoder"],
self.main_model_inputs["seq_lens_decoder"],
self.main_model_inputs["step_idx"],
self.main_model_inputs["stop_flags"],
self.main_model_inputs["is_block_step"],
self.main_model_inputs["draft_tokens"],
self.num_model_steps,
self.speculative_method in ["eagle", "mtp"],
self.role == "prefill",
)
target_hidden_states = eagle_get_hidden_states(
full_hidden_states,
self.model_inputs["seq_lens_this_time"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
self.model_inputs["stop_flags"],
self.main_model_inputs["accept_num"],
self.main_model_inputs["seq_lens_this_time"],
self.main_model_inputs["seq_lens_encoder"],
self.num_model_steps,
)
if isinstance(target_hidden_states, list):
target_hidden_states = target_hidden_states[0]
return target_hidden_states
def _post_process(self, sampled_token_ids):
"""
PostProcess for generation
"""
draft_model_update(
sampled_token_ids,
self.model_inputs["draft_tokens"],
self.model_inputs["pre_ids"],
self.model_inputs["seq_lens_this_time"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
self.model_inputs["step_idx"],
self.model_inputs["output_cum_offsets"],
self.model_inputs["stop_flags"],
self.model_inputs["not_need_stop"],
self.model_inputs["max_dec_len"],
self.model_inputs["eos_token_id"],
self.model_inputs["base_model_draft_tokens"],
self.max_model_len,
self.model_inputs["substep"],
)
if self.role == "prefill":
mtp_save_first_token(
self.model_inputs["base_model_draft_tokens"],
self.model_inputs["not_need_stop"],
self.local_rank,
self.parallel_config.use_ep,
)
def _propose(self, target_hidden_states):
"""
Main process for MTP inference
"""
for substep in range(self.num_model_steps):
if self.model_inputs["not_need_stop"]:
self.model_inputs["substep"] = substep
# Remove padding
(
ids_remove_padding,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
output_cum_offsets,
output_padding_offset,
) = pre_process(
self.model_inputs["input_ids"],
self.model_inputs["seq_lens_this_time"],
True,
self.model_inputs["draft_tokens"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
)
# Initialize forward meta data
self.model_inputs["ids_remove_padding"].copy_(ids_remove_padding, False)
self.model_inputs["batch_id_per_token"].copy_(batch_id_per_token, False)
self.model_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
self.model_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
# for speculative decoding
self.model_inputs["output_cum_offsets"] = output_cum_offsets
self.model_inputs["output_padding_offset"] = output_padding_offset
self._initialize_forward_meta()
# Get sampling metadata
self.sampling_metadata = SamplingMetadata(
temperature=self.model_inputs["temperature"],
top_p=self.model_inputs["top_p"],
top_k=self.model_inputs["top_k"],
step_idx=self.model_inputs["step_idx"],
pre_token_ids=self.model_inputs["pre_ids"],
frequency_penalties=self.model_inputs["frequency_score"],
presence_penalties=self.model_inputs["presence_score"],
repetition_penalties=self.model_inputs["penalty_score"],
min_dec_lens=self.model_inputs["min_dec_len"],
bad_words_token_ids=self.model_inputs["bad_tokens"],
eos_token_ids=self.model_inputs["eos_token_id"],
)
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.clone(self.model_inputs["seq_lens_this_time"])
model_output = self.model(
ids_remove_padding=self.model_inputs["ids_remove_padding"],
previous_hidden_states=target_hidden_states,
forward_meta=self.forward_meta,
)
hidden_states = rebuild_padding(
model_output,
self.model_inputs["cu_seqlens_q"],
self.model_inputs["seq_lens_this_time"],
self.model_inputs["seq_lens_decoder"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["output_padding_offset"],
self.parallel_config.max_model_len,
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hidden_states)
sampled_token_ids = self.sampler(
logits,
self.sampling_metadata,
self.max_model_len,
self.model_inputs,
)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(sampled_token_ids, 0)
self._post_process(sampled_token_ids)
if substep != self.num_model_steps - 1:
target_hidden_states = self._get_self_hidden_states(hidden_states)
def _get_self_hidden_states(self, hidden_states):
target_hidden_states = eagle_get_self_hidden_states(
hidden_states,
self.last_seq_lens_this_time,
self.model_inputs["seq_lens_this_time"],
self.model_inputs["step_idx"],
)
if isinstance(target_hidden_states, list):
target_hidden_states = target_hidden_states[0]
return target_hidden_states
def update_task_chunk_prefill(self, task):
"""
Update single task's chunk_prefill info
"""
idx = task.idx
start_idx = sum(task.prefill_chunk_info[: task.chunk_idx])
if task.chunk_idx == len(task.prefill_chunk_info):
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.model_inputs["step_idx"][idx : idx + 1] = 1
self.model_inputs["seq_lens_decoder"][idx : idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
else:
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
if task.chunk_idx < len(task.prefill_chunk_info) - 1:
self.model_inputs["input_ids"][idx, :token_chunk_size] = np.array(
task.prompt_token_ids[start_idx + 1 : start_idx + token_chunk_size + 1]
)
# Last prefill
else:
self.model_inputs["input_ids"][idx, : token_chunk_size - 1] = np.array(
task.prompt_token_ids[start_idx + 1 : start_idx + token_chunk_size]
)
self.model_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
self.model_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.model_inputs["step_idx"][idx : idx + 1] = 0
self.model_inputs["seq_lens_decoder"][idx : idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
def _update_status(self):
"""
Update main-model's forward info in next step.
Allocate/Free block of MPT.
"""
draft_model_postprocess(
self.main_model_inputs["draft_tokens"],
self.main_model_inputs["seq_lens_this_time"],
self.main_model_inputs["seq_lens_encoder"],
self.main_model_inputs["stop_flags"],
)
mtp_step_paddle(
self.main_model_inputs["stop_flags"],
self.model_inputs["stop_flags"],
self.model_inputs["batch_drop"],
self.model_inputs["seq_lens_this_time"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
self.model_inputs["block_tables"],
self.model_inputs["encoder_block_lens"],
self.model_inputs["used_list_len"],
self.model_inputs["free_list"],
self.model_inputs["free_list_len"],
self.cache_config.block_size,
self.max_draft_token_num,
)
def _extend_draft_token_with_ngram_match(self):
# TODO(liuzichang): Optimize this Kernel to CUDA Kernel to reduce lantency
device = paddle.CUDAPinnedPlace()
draft_tokens = self.main_model_inputs["draft_tokens"].cpu()
seq_lens_this_time = self.main_model_inputs["seq_lens_this_time"].cpu()
seq_lens_decoder = self.model_inputs["seq_lens_decoder"].cpu()
hybrid_mtp_ngram(
self.model_inputs["input_ids_cpu"],
self.input_ids_len,
self.model_inputs["pre_ids"]._copy_to(device, True),
self.model_inputs["step_idx"].cpu(),
self.main_model_inputs["actual_draft_token_num"].cpu(),
draft_tokens,
seq_lens_this_time,
seq_lens_decoder,
self.model_inputs["max_dec_len"].cpu(),
self.max_ngram_size,
self.min_ngram_size,
self.max_draft_token_num,
)
self.main_model_inputs["draft_tokens"][:] = draft_tokens.cuda()
self.main_model_inputs["seq_lens_this_time"][:] = seq_lens_this_time.cuda()
def _run_impl(self, full_hidden_states):
""""""
target_hidden_states = self._prepare_inputs(full_hidden_states)
self._propose(target_hidden_states=target_hidden_states)
self._update_status()
if self.hybrid_mode:
self._extend_draft_token_with_ngram_match()
def is_chunk_prefill_enabled(self):
""""""
return True