mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-02 15:22:24 +08:00
274 lines
11 KiB
Plaintext
274 lines
11 KiB
Plaintext
// Copyright © 2024 PaddlePaddle Name. All Rights Reserved.
|
||
//
|
||
// This code is partially inspired by and references the implementation found in
|
||
// FlashInfer. Specifically, the implementation of Top-p Sampling functionality
|
||
// in this code is inspired by the logic of FlashInfer’s
|
||
// flashinfer.sampling.top_p_sampling_from_probs function. For more details on
|
||
// FlashInfer’s documentation, please refer to:
|
||
// https://docs.flashinfer.ai/generated/flashinfer.sampling.top_p_sampling_from_probs.html#flashinfer-sampling-top-p-sampling-from_probs
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
#pragma once
|
||
|
||
#include <cuda_device_runtime_api.h>
|
||
#include <cuda_runtime.h>
|
||
|
||
#include <cstdint>
|
||
#include <iostream>
|
||
#include <sstream>
|
||
#include <stdexcept>
|
||
#include <vector>
|
||
#include <curand.h>
|
||
#include <curand_kernel.h>
|
||
#include <curand_philox4x32_x.h>
|
||
|
||
/******************* utils *******************/
|
||
#define STR_HELPER(x) #x
|
||
#define STR(x) STR_HELPER(x)
|
||
|
||
#ifndef NDEBUG
|
||
#define CUDA_CALL(func, ...) \
|
||
{ \
|
||
cudaError_t e = (func); \
|
||
if (e != cudaSuccess) { \
|
||
std::cerr << "CUDA Error: " << cudaGetErrorString(e) << " (" << e \
|
||
<< ") " << __FILE__ << ": line " << __LINE__ \
|
||
<< " at function " << STR(func) << std::endl; \
|
||
return e; \
|
||
} \
|
||
}
|
||
#else
|
||
#define CUDA_CALL(func, ...) \
|
||
{ \
|
||
cudaError_t e = (func); \
|
||
if (e != cudaSuccess) { \
|
||
return e; \
|
||
} \
|
||
}
|
||
#endif
|
||
|
||
#define DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, ...) \
|
||
if (deterministic) { \
|
||
constexpr bool DETERMINISTIC = true; \
|
||
__VA_ARGS__ \
|
||
} else { \
|
||
constexpr bool DETERMINISTIC = false; \
|
||
__VA_ARGS__ \
|
||
}
|
||
|
||
#define DISPATCH_ALIGNED_VEC_SIZE(aligned_vec_size, ALIGNED_VEC_SIZE, ...) \
|
||
switch (aligned_vec_size) { \
|
||
case 16: { \
|
||
constexpr size_t ALIGNED_VEC_SIZE = 16; \
|
||
__VA_ARGS__ \
|
||
break; \
|
||
} \
|
||
case 8: { \
|
||
constexpr size_t ALIGNED_VEC_SIZE = 8; \
|
||
__VA_ARGS__ \
|
||
break; \
|
||
} \
|
||
case 4: { \
|
||
constexpr size_t ALIGNED_VEC_SIZE = 4; \
|
||
__VA_ARGS__ \
|
||
break; \
|
||
} \
|
||
case 2: { \
|
||
constexpr size_t ALIGNED_VEC_SIZE = 2; \
|
||
__VA_ARGS__ \
|
||
break; \
|
||
} \
|
||
case 1: { \
|
||
constexpr size_t ALIGNED_VEC_SIZE = 1; \
|
||
__VA_ARGS__ \
|
||
break; \
|
||
} \
|
||
default: { \
|
||
std::ostringstream err_msg; \
|
||
err_msg << "Unsupported aligned_vec_size: " << aligned_vec_size; \
|
||
throw std::invalid_argument(err_msg.str()); \
|
||
} \
|
||
}
|
||
|
||
/******************* vec_t<float> *******************/
|
||
#define SAMPLING_INLINE inline __attribute__((always_inline)) __device__
|
||
template <typename float_t, size_t vec_size> struct vec_t {
|
||
SAMPLING_INLINE float_t &operator[](size_t i);
|
||
SAMPLING_INLINE const float_t &operator[](size_t i) const;
|
||
SAMPLING_INLINE void fill(float_t val);
|
||
SAMPLING_INLINE void load(const float_t *ptr);
|
||
SAMPLING_INLINE void store(float_t *ptr) const;
|
||
template <typename T>
|
||
SAMPLING_INLINE void cast_from(const vec_t<T, vec_size> &src);
|
||
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr);
|
||
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const;
|
||
SAMPLING_INLINE static void memcpy(float_t *dst, const float_t *src);
|
||
SAMPLING_INLINE float_t *ptr();
|
||
};
|
||
|
||
// float x 1
|
||
template <> struct vec_t<float, 1> {
|
||
float data;
|
||
|
||
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(&data))[i]; }
|
||
SAMPLING_INLINE const float &operator[](size_t i) const {
|
||
return ((const float *)(&data))[i];
|
||
}
|
||
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
|
||
SAMPLING_INLINE void fill(float val);
|
||
SAMPLING_INLINE void load(const float *ptr);
|
||
SAMPLING_INLINE void store(float *ptr) const;
|
||
template <typename T> SAMPLING_INLINE void cast_from(const vec_t<T, 1> &src) {
|
||
cast_from_impl(*this, src);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
|
||
cast_load_impl(*this, ptr);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
|
||
cast_store_impl(ptr, *this);
|
||
}
|
||
SAMPLING_INLINE static void memcpy(float *dst, const float *src);
|
||
};
|
||
|
||
SAMPLING_INLINE void vec_t<float, 1>::fill(float val) { data = val; }
|
||
|
||
SAMPLING_INLINE void vec_t<float, 1>::load(const float *ptr) { data = *ptr; }
|
||
|
||
SAMPLING_INLINE void vec_t<float, 1>::store(float *ptr) const { *ptr = data; }
|
||
|
||
SAMPLING_INLINE void vec_t<float, 1>::memcpy(float *dst, const float *src) {
|
||
*dst = *src;
|
||
}
|
||
|
||
// float x 2
|
||
template <> struct vec_t<float, 2> {
|
||
float2 data;
|
||
|
||
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(&data))[i]; }
|
||
SAMPLING_INLINE const float &operator[](size_t i) const {
|
||
return ((const float *)(&data))[i];
|
||
}
|
||
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
|
||
SAMPLING_INLINE void fill(float val);
|
||
SAMPLING_INLINE void load(const float *ptr);
|
||
SAMPLING_INLINE void store(float *ptr) const;
|
||
template <typename T> SAMPLING_INLINE void cast_from(const vec_t<T, 2> &src) {
|
||
cast_from_impl(*this, src);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
|
||
cast_load_impl(*this, ptr);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
|
||
cast_store_impl(ptr, *this);
|
||
}
|
||
SAMPLING_INLINE static void memcpy(float *dst, const float *src);
|
||
};
|
||
|
||
SAMPLING_INLINE void vec_t<float, 2>::fill(float val) {
|
||
data = make_float2(val, val);
|
||
}
|
||
|
||
SAMPLING_INLINE void vec_t<float, 2>::load(const float *ptr) {
|
||
data = *((float2 *)ptr);
|
||
}
|
||
|
||
SAMPLING_INLINE void vec_t<float, 2>::store(float *ptr) const {
|
||
*((float2 *)ptr) = data;
|
||
}
|
||
|
||
SAMPLING_INLINE void vec_t<float, 2>::memcpy(float *dst, const float *src) {
|
||
*((float2 *)dst) = *((float2 *)src);
|
||
}
|
||
|
||
// float x 4 or more
|
||
template <size_t vec_size> struct vec_t<float, vec_size> {
|
||
float4 data[vec_size / 4];
|
||
|
||
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(data))[i]; }
|
||
SAMPLING_INLINE const float &operator[](size_t i) const {
|
||
return ((const float *)(data))[i];
|
||
}
|
||
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
|
||
SAMPLING_INLINE void fill(float val) {
|
||
#pragma unroll
|
||
for (size_t i = 0; i < vec_size / 4; ++i) {
|
||
data[i] = make_float4(val, val, val, val);
|
||
}
|
||
}
|
||
SAMPLING_INLINE void load(const float *ptr) {
|
||
#pragma unroll
|
||
for (size_t i = 0; i < vec_size / 4; ++i) {
|
||
data[i] = ((float4 *)ptr)[i];
|
||
}
|
||
}
|
||
SAMPLING_INLINE void store(float *ptr) const {
|
||
#pragma unroll
|
||
for (size_t i = 0; i < vec_size / 4; ++i) {
|
||
((float4 *)ptr)[i] = data[i];
|
||
}
|
||
}
|
||
template <typename T>
|
||
SAMPLING_INLINE void cast_from(const vec_t<T, vec_size> &src) {
|
||
cast_from_impl(*this, src);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
|
||
cast_load_impl(*this, ptr);
|
||
}
|
||
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
|
||
cast_store_impl(ptr, *this);
|
||
}
|
||
SAMPLING_INLINE static void memcpy(float *dst, const float *src) {
|
||
#pragma unroll
|
||
for (size_t i = 0; i < vec_size / 4; ++i) {
|
||
((float4 *)dst)[i] = ((float4 *)src)[i];
|
||
}
|
||
}
|
||
};
|
||
|
||
template <typename src_float_t, typename tgt_float_t, size_t vec_size>
|
||
SAMPLING_INLINE void cast_load_impl(vec_t<tgt_float_t, vec_size>& dst,
|
||
const src_float_t* src_ptr) {
|
||
if constexpr (std::is_same_v<src_float_t, tgt_float_t>) {
|
||
dst.load(src_ptr);
|
||
} else {
|
||
vec_t<src_float_t, vec_size> tmp;
|
||
tmp.load(src_ptr);
|
||
dst.cast_from(tmp);
|
||
}
|
||
}
|
||
|
||
inline std::pair<int, int> GetCudaComputeCapability() {
|
||
int device_id = 0;
|
||
cudaGetDevice(&device_id);
|
||
int major = 0, minor = 0;
|
||
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, device_id);
|
||
cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, device_id);
|
||
return std::make_pair(major, minor);
|
||
}
|
||
|
||
/******************* math *******************/
|
||
__forceinline__ __device__ float ptx_rcp(float x) {
|
||
#ifdef PADDLE_WITH_COREX
|
||
return __ivcorex_rcpf(x);
|
||
#else
|
||
float y;
|
||
asm volatile("rcp.approx.ftz.f32 %0, %1;" : "=f"(y) : "f"(x));
|
||
return y;
|
||
#endif
|
||
}
|
||
|
||
template <typename T1, typename T2>
|
||
__forceinline__ __device__ __host__ T1 ceil_div(const T1 x, const T2 y) {
|
||
return (x + y - 1) / y;
|
||
}
|