Files
FastDeploy/custom_ops/gpu_ops/mla_attn/kernel_traits.cuh
Jiang-Jia-Jun 05c670e593 [Sync] Update to latest code (#2679)
* [Sync] Update to latest code

* Add new code files

* Add new code files

* update code

* Try to fix build.sh

* Try to fix build.sh

* Update code

* Update requirements.txt

* Update code

---------

Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
2025-07-03 15:43:53 +08:00

164 lines
8.1 KiB
Plaintext

// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri
* Dao. Licensed under the BSD 3-Clause.
*
* Modified by the FlashInfer team.
*/
#ifndef ATTENTION_HOPPER_KERNEL_TRAITS_CUH_
#define ATTENTION_HOPPER_KERNEL_TRAITS_CUH_
#include <type_traits>
#include "cute/algorithm/copy.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/layout/layout.h"
#include "cutlass/numeric_types.h"
#include "cutlass/pipeline/pipeline.hpp"
namespace mla_attn {
using namespace cute;
template <typename MainloopPipeline, typename MainloopPipelineQ, class DTypeQ, class DTypeKV, class DTypeQKAccum, class DTypeOut, class IdType,
int BLOCK_SHAPE_KV, class SmemLayoutQ, class SmemLayoutK, class SmemLayoutP, class SmemLayoutRow, class SmemLayoutO>
struct alignas(16) SharedStorageQKVO {
alignas(16) cute::array_aligned<DTypeQ, cute::cosize_v<SmemLayoutQ>> smem_q;
alignas(16) cute::array_aligned<DTypeQ, cute::cosize_v<SmemLayoutP>> smem_p;
alignas(16) cute::array_aligned<DTypeQKAccum, cute::cosize_v<SmemLayoutRow>> smem_scale;
union {
alignas(16) cute::array_aligned<DTypeKV, cute::cosize_v<SmemLayoutK>> smem_kv;
alignas(16) cute::array_aligned<DTypeOut, cute::cosize_v<SmemLayoutO>> smem_o;
};
struct {
alignas(16) typename MainloopPipelineQ::SharedStorage pipeline_q;
alignas(16) typename MainloopPipeline::SharedStorage pipeline_kv;
};
};
template <bool USE_TMA_LOAD_KV_, int HEAD_DIM_QK_, int HEAD_DIM_VO_, int GROUP_SIZE_, int BLOCK_SHAPE_Q_, int BLOCK_SHAPE_KV_,
int NUM_STAGES_, typename DTypeQ_, typename DTypeKV_, typename DTypeO_, typename IdType_, typename NV_TYPE_>
struct AttentionKernelTraits {
using DTypeQ = DTypeQ_;
using DTypeKV = DTypeKV_;
using DTypeO = DTypeO_;
using IdType = IdType_;
using DTypeQKAccum = float;
using DTypePVAccum = float;
using NV_TYPE = NV_TYPE_;
static constexpr bool USE_TMA_LOAD_KV = USE_TMA_LOAD_KV_;
static constexpr int GROUP_SIZE = GROUP_SIZE_;
static constexpr int BLOCK_SHAPE_Q = BLOCK_SHAPE_Q_;
static_assert(BLOCK_SHAPE_Q % 64 == 0);
static constexpr int BLOCK_SHAPE_KV = BLOCK_SHAPE_KV_;
static constexpr int HEAD_DIM_QK = HEAD_DIM_QK_;
static constexpr int HEAD_DIM_VO = HEAD_DIM_VO_;
static constexpr int NUM_PER_STAGE = BLOCK_SHAPE_KV * HEAD_DIM_QK;
static_assert(HEAD_DIM_QK % 32 == 0);
static_assert(HEAD_DIM_VO % 32 == 0);
static constexpr int NUM_WARPS = 12;
static constexpr int NUM_THREADS = 384;
static constexpr int NUM_PRODUCER_THREADS = 128;
using TileShape_QKD = Shape<Int<BLOCK_SHAPE_Q>, Int<BLOCK_SHAPE_KV>, Int<HEAD_DIM_QK>>;
using TileShape_PDV = Shape<Int<BLOCK_SHAPE_Q>, Int<HEAD_DIM_VO>, Int<BLOCK_SHAPE_KV>>;
static constexpr int NUM_STAGES = NUM_STAGES_;
using AtomLayoutQKD = Layout<Shape<Int<BLOCK_SHAPE_Q / 64>, _1, _1>>;
using AtomLayoutPV = Layout<Shape<Int<BLOCK_SHAPE_Q / 64>, _2, _1>>;
using TiledMmaQK = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<DTypeQ, DTypeKV, DTypeQKAccum, TileShape_QKD>(), AtomLayoutQKD{}));
using TiledMmaPV = decltype(cute::make_tiled_mma(
cute::GMMA::rs_op_selector<DTypeKV, DTypeKV, /*ElementAccum=*/DTypePVAccum, TileShape_PDV,
GMMA::Major::K, GMMA::Major::MN>(),
AtomLayoutPV{}));
using TiledMmaPVSS = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<DTypeKV, DTypeKV, /*ElementAccum=*/DTypePVAccum, TileShape_PDV,
GMMA::Major::K, GMMA::Major::MN>(),
AtomLayoutPV{}));
static constexpr int NUM_MMA_THREADS = size(TiledMmaPV{});
using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeQ, decltype(cute::get<0>(TileShape_QKD{})),
decltype(cute::get<2>(TileShape_QKD{}))>());
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_QKD{})));
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeKV, decltype(cute::get<1>(TileShape_QKD{})),
decltype(cute::get<2>(TileShape_QKD{}))>());
using SmemLayoutK = decltype(tile_to_shape(
SmemLayoutAtomK{},
make_shape(shape<1>(TileShape_QKD{}), shape<2>(TileShape_QKD{}), Int<NUM_STAGES>{})));
using SmemLayoutVt = decltype(composition(
SmemLayoutK{}, make_ordered_layout(make_shape(get<2>(TileShape_QKD{}),
get<1>(TileShape_QKD{}), Int<NUM_STAGES>{}),
Step<_2, _1, _3>{})));
using SmemLayoutAtomV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeKV, decltype(cute::get<2>(TileShape_PDV{})),
decltype(cute::get<1>(TileShape_PDV{}))>());
using SmemLayoutV = decltype(tile_to_shape(
SmemLayoutAtomV{},
make_shape(get<2>(TileShape_PDV{}), get<1>(TileShape_PDV{}), Int<1>{})));
// Note this is the transpose in terms of the view, not in terms of memory.
using SmemLayoutVtOneStage = decltype(composition(
SmemLayoutV{}, make_ordered_layout(make_shape(get<1>(TileShape_PDV{}),
get<2>(TileShape_PDV{}), Int<1>{}),
Step<_2, _1, _3>{})));
using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeO, decltype(cute::get<0>(TileShape_PDV{})),
decltype(cute::get<1>(TileShape_PDV{}))>());
using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 1>(TileShape_PDV{})));
using SmemCopyAtom = Copy_Atom<cute::SM90_U32x4_STSM_N, DTypeQ>;
static constexpr bool IS_CTA_32 = (BLOCK_SHAPE_KV == 32);
using SmemLayoutRowOneStage = Layout<Shape<_2, Int<128>>, Stride<_1, _2>>;
using SmemLayoutRowTwoStage = Layout<Shape<_2, Int<128>, _2>, Stride<_1, _2, _256>>;
using SmemLayoutRow = std::conditional_t<IS_CTA_32, SmemLayoutRowTwoStage, SmemLayoutRowOneStage>;
using SmemLayoutAtomP = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeQ, decltype(cute::get<0>(TileShape_QKD{})),
decltype(cute::get<1>(TileShape_QKD{}))>());
using SmemLayoutPSSOneStage = decltype(tile_to_shape(SmemLayoutAtomP{}, select<0, 1>(TileShape_QKD{})));
using SmemLayoutPSSTwoStage = decltype(tile_to_shape(SmemLayoutAtomP{}, make_shape(Int<BLOCK_SHAPE_Q>{}, Int<BLOCK_SHAPE_KV>{}, Int<2>{})));
using SmemLayoutP = std::conditional_t<IS_CTA_32, SmemLayoutPSSTwoStage, SmemLayoutPSSOneStage>;
using MainloopPipelineQ = typename cutlass::PipelineAsync<1>;
using PipelineStateQ = typename cutlass::PipelineState<1>;
using MainloopPipeline =
std::conditional_t<USE_TMA_LOAD_KV, typename cutlass::PipelineTmaAsync<NUM_STAGES>,
typename cutlass::PipelineAsync<NUM_STAGES>>;
using PipelineState = typename cutlass::PipelineState<NUM_STAGES>;
using SharedStorage = SharedStorageQKVO<MainloopPipeline, MainloopPipelineQ, DTypeQ, DTypeKV, DTypeQKAccum, DTypeO, IdType, BLOCK_SHAPE_KV,
SmemLayoutQ, SmemLayoutK, SmemLayoutP, SmemLayoutRow, SmemLayoutO>;
};
} // namespace mla_attn
#endif