Files
FastDeploy/custom_ops/gpu_ops/merge_prefill_decode_output.cu
2025-08-01 18:03:36 +08:00

118 lines
4.0 KiB
Plaintext

// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/extension.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
template <int warps, typename T>
__global__ void FillEncoderDecoderResKernel(
T * encoder_res_data,
T * decoder_res_data,
const int * seq_lens_encoder,
const int * seq_lens_decoder,
const int * seq_lens_this_time,
const int * cu_seq_q,
const int head_num,
const int head_dim) {
const int bidb = blockIdx.x;
const int bidh = blockIdx.y;
const int bidt = blockIdx.z * warps;
const int tid = threadIdx.x;
const int warp_id = tid / 32;
const int land_id = tid % 32;
const int token_id = bidt + warp_id;
const int seq_len_encoder = seq_lens_encoder[bidb];
const int seq_len_decoder = seq_lens_decoder[bidb];
const int seq_len_this_time = seq_lens_this_time[bidb];
if (seq_len_encoder > 0 || seq_len_decoder == 0 || token_id >= seq_len_this_time) {
return;
}
const int load_idx = ((cu_seq_q[bidb] + token_id) * head_num + bidh) * head_dim + land_id * 4;
*reinterpret_cast<float2*>(encoder_res_data + load_idx) = *reinterpret_cast<float2*>(decoder_res_data + load_idx);
}
void MergePrefillDecodeOutput(
const paddle::Tensor &encoder_res,
const paddle::Tensor &decoder_res,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &cu_seq_q,
const int head_num,
const int head_dim,
const int max_token) {
if (head_dim != 128) {
PD_THROW("Only supported head_dim = 128");
}
const int batch_size = seq_lens_encoder.shape()[0];
constexpr int warps = 4;
const int tokens_block = (max_token + warps - 1) / warps;
dim3 grid_dims;
grid_dims.x = batch_size;
grid_dims.y = head_num;
grid_dims.z = tokens_block;
if (encoder_res.dtype() == paddle::DataType::FLOAT16) {
using T = phi::dtype::float16;
FillEncoderDecoderResKernel<warps>
<<<grid_dims, 128, 0, encoder_res.stream()>>>(
const_cast<T*>(encoder_res.data<T>()),
const_cast<T*>(decoder_res.data<T>()),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
seq_lens_this_time.data<int>(),
cu_seq_q.data<int>(),
head_num,
head_dim
);
} else if (encoder_res.dtype() == paddle::DataType::BFLOAT16) {
using T = phi::dtype::bfloat16;
FillEncoderDecoderResKernel<warps>
<<<grid_dims, 128, 0, encoder_res.stream()>>>(
const_cast<T*>(encoder_res.data<T>()),
const_cast<T*>(decoder_res.data<T>()),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
seq_lens_this_time.data<int>(),
cu_seq_q.data<int>(),
head_num,
head_dim
);
}
}
PD_BUILD_STATIC_OP(merge_prefill_decode_output)
.Inputs({"encoder_res",
"decoder_res",
"seq_lens_encoder",
"seq_lens_decoder",
"seq_lens_this_time",
"cu_seq_q"})
.Outputs({"res"})
.Attrs({"head_num: int",
"head_dim: int",
"max_token: int"})
.SetInplaceMap({{"encoder_res", "res"}})
.SetKernelFn(PD_KERNEL(MergePrefillDecodeOutput));