mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| import logging
 | |
| from ... import c_lib_wrap as C
 | |
| 
 | |
| 
 | |
| def vis_detection(im_data,
 | |
|                   det_result,
 | |
|                   score_threshold=0.0,
 | |
|                   line_size=1,
 | |
|                   font_size=0.5):
 | |
|     return C.vision.Visualize.vis_detection(
 | |
|         im_data, det_result, score_threshold, line_size, font_size)
 | |
| 
 | |
| 
 | |
| def vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5):
 | |
|     return C.vision.Visualize.vis_face_detection(im_data, face_det_result,
 | |
|                                                  line_size, font_size)
 | |
| 
 | |
| 
 | |
| def vis_segmentation(im_data, seg_result):
 | |
|     return C.vision.Visualize.vis_segmentation(im_data, seg_result)
 | |
| 
 | |
| 
 | |
| def vis_matting_alpha(im_data,
 | |
|                       matting_result,
 | |
|                       remove_small_connected_area=False):
 | |
|     return C.vision.Visualize.vis_matting_alpha(im_data, matting_result,
 | |
|                                                 remove_small_connected_area)
 | |
| 
 | |
| 
 | |
| def swap_background_matting(im_data,
 | |
|                             background,
 | |
|                             result,
 | |
|                             remove_small_connected_area=False):
 | |
|     assert isinstance(
 | |
|         result,
 | |
|         C.vision.MattingResult), "The result must be MattingResult type"
 | |
|     return C.vision.Visualize.swap_background_matting(
 | |
|         im_data, background, result, remove_small_connected_area)
 | |
| 
 | |
| 
 | |
| def swap_background_segmentation(im_data, background, background_label,
 | |
|                                  result):
 | |
|     assert isinstance(
 | |
|         result, C.vision.
 | |
|         SegmentationResult), "The result must be SegmentaitonResult type"
 | |
|     return C.vision.Visualize.swap_background_segmentation(
 | |
|         im_data, background, background_label, result)
 | |
| 
 | |
| 
 | |
| def remove_small_connected_area(alpha_pred_data, threshold):
 | |
|     assert len(alpha_pred_data.shape) == 3, "alpha has a (h, w, 1) shape"
 | |
|     return C.vision.Visualize.remove_small_connected_area(alpha_pred_data,
 | |
|                                                           threshold)
 | |
| def vis_ppocr(im_data, det_result):
 | |
|     return C.vision.Visualize.vis_ppocr(im_data, det_result)
 | 
