Files
FastDeploy/fastdeploy/vision/ocr/ppocr/classifier.cc
2022-09-22 13:24:05 +08:00

150 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/classifier.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
Classifier::Classifier() {}
Classifier::Classifier(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT,
Backend::OPENVINO}; // 指定可用的CPU后端
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::PDINFER, Backend::TRT, Backend::ORT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
// Init
bool Classifier::Initialize() {
// pre&post process parameters
cls_thresh = 0.9;
cls_image_shape = {3, 48, 192};
cls_batch_num = 1;
mean = {0.5f, 0.5f, 0.5f};
scale = {0.5f, 0.5f, 0.5f};
is_scale = true;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
void OcrClassifierResizeImage(Mat* mat,
const std::vector<int>& rec_image_shape) {
int imgC = rec_image_shape[0];
int imgH = rec_image_shape[1];
int imgW = rec_image_shape[2];
float ratio = float(mat->Width()) / float(mat->Height());
int resize_w;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
Resize::Run(mat, resize_w, imgH);
std::vector<float> value = {0, 0, 0};
if (resize_w < imgW) {
Pad::Run(mat, 0, 0, 0, imgW - resize_w, value);
}
}
//预处理
bool Classifier::Preprocess(Mat* mat, FDTensor* output) {
// 1. cls resizes
// 2. normalize
// 3. batch_permute
OcrClassifierResizeImage(mat, cls_image_shape);
Normalize::Run(mat, mean, scale, true);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
return true;
}
//后处理
bool Classifier::Postprocess(FDTensor& infer_result,
std::tuple<int, float>* cls_result) {
std::vector<int64_t> output_shape = infer_result.shape;
FDASSERT(output_shape[0] == 1, "Only support batch =1 now.");
float* out_data = static_cast<float*>(infer_result.Data());
int label = std::distance(
&out_data[0], std::max_element(&out_data[0], &out_data[output_shape[1]]));
float score =
float(*std::max_element(&out_data[0], &out_data[output_shape[1]]));
std::get<0>(*cls_result) = label;
std::get<1>(*cls_result) = score;
return true;
}
//预测
bool Classifier::Predict(cv::Mat* img, std::tuple<int, float>* cls_result) {
Mat mat(*img);
std::vector<FDTensor> input_tensors(1);
if (!Preprocess(&mat, &input_tensors[0])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], cls_result)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namesapce ocr
} // namespace vision
} // namespace fastdeploy