Files
FastDeploy/fastdeploy/splitwise/splitwise_connector.py
Daci 2f208db4e9 [Feature] Multimodal Model P / D Separation (#5323)
* RouterArgs port str -> int

* fix race condition [is_fetching] causing multiple fetch requests

* bugfix: Delete duplicate input_ids tensor creation

* mm pd splitwise json -> pickle5; multimodal_inputs only pos id;
debuglog f to %s

* fix ENABLE_V1_KVCACHE_SCHEDULER=0 mm model lack pos_id, ...

* update cr

* Apply suggestions from code review

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>

* pre-commit fix

* rm multimodal_inputs deepcopy & fix rdma_cache_transfer.py tpsize=0

---------

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-09 10:47:42 +08:00

470 lines
19 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import pickle
import time
import traceback
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List
import zmq
from fastdeploy import envs
from fastdeploy.engine.request import Request, RequestOutput
from fastdeploy.inter_communicator import EngineWorkerQueue
from fastdeploy.metrics.metrics import main_process_metrics
from fastdeploy.utils import get_logger
class SplitwiseConnector:
"""
SplitwiseConnector class for managing and scheduling Splitwise tasks.
"""
def __init__(self, cfg, worker_queue, resource_manager):
"""
Initialize the SplitwiseConnector instance.
Parameters:
cfg (dict): Configuration information.
worker_queue (object): Worker queue object.
resource_manager (object): Resource manager object.
"""
self.cfg = cfg
self.local_data_parallel_id = self.cfg.parallel_config.local_data_parallel_id
if self.cfg.parallel_config.data_parallel_size > 1:
self.logger = get_logger(
"splitwise_connector", f"splitwise_connector_dprank{self.local_data_parallel_id}.log"
)
else:
self.logger = get_logger("splitwise_connector", "splitwise_connector.log")
self.engine_worker_queue = worker_queue
self.resource_manager = resource_manager
self.connect_innode_instances = {}
self.current_request_ids = dict()
self.enable_decode_cache_task = envs.FD_ENABLE_CACHE_TASK == "1"
if self.cfg.cache_config.pd_comm_port is not None:
self.zmq_ctx = zmq.Context()
self.push_sockets: Dict[str, zmq.Socket] = {}
self.pull_socket = None
self.io_executor = ThreadPoolExecutor(max_workers=4)
self._init_network()
def _init_network(self):
"""
init network for splitwise
"""
self.router_socket = self.zmq_ctx.socket(zmq.ROUTER)
self.router_socket.setsockopt(zmq.LINGER, 0)
self.router_socket.setsockopt(zmq.SNDHWM, 1000)
self.router_socket.setsockopt(zmq.ROUTER_MANDATORY, 1)
self.router_socket.bind(f"tcp://*:{self.cfg.cache_config.pd_comm_port[0]}")
self.logger.info(f"_init_network: bind {self.cfg.cache_config.pd_comm_port}")
self.poller = zmq.Poller()
self.poller.register(self.router_socket, zmq.POLLIN)
self.push_sockets = {}
self.prefill_cache_info = []
def start_receiver(self):
"""
start receiver thread
"""
while True:
try:
if hasattr(self, "poller"):
socks = dict(self.poller.poll(100))
if not socks:
continue
else:
self.logger.debug("start_receiver: receive %s", socks)
frames = self.router_socket.recv_multipart()
self.logger.debug("start_receiver: frames: %s", frames)
# message = frames[-1]
self.io_executor.submit(self._process_message, frames)
time.sleep(0.001)
else:
time.sleep(5)
except Exception as e:
self.logger.error(f"start_receiver: Receiver error: {e}, {str(traceback.format_exc())}")
time.sleep(1)
def _get_push_socket(self, addr):
"""获取或创建 DEALER socket"""
if addr in self.push_sockets:
sock = self.push_sockets[addr]
if not sock.closed:
return sock
try:
self.logger.info(f"_get_push_socket: Establishing new connection to {addr}")
sock = self.zmq_ctx.socket(zmq.DEALER)
# 设置连接参数
sock.setsockopt(zmq.LINGER, 0)
sock.setsockopt(zmq.SNDHWM, 1000)
sock.setsockopt(zmq.RECONNECT_IVL, 1000)
sock.setsockopt(zmq.RECONNECT_IVL_MAX, 5000)
sock.setsockopt(zmq.TCP_KEEPALIVE, 1)
sock.setsockopt(zmq.TCP_KEEPALIVE_IDLE, 60)
sock.setsockopt(zmq.TCP_KEEPALIVE_INTVL, 10)
sock.connect(f"tcp://{addr}")
self.push_sockets[addr] = sock
return sock
except zmq.ZMQError as e:
self.logger.error(f"_get_push_socket: Connection to {addr} failed: {e}")
raise ConnectionError(f"Failed to connect to {addr}") from e
def _send_message(self, addr, msg_type: str, payload):
if not addr:
return
try:
message = self._serialize_message(msg_type, payload)
try:
self.logger.info(f"_send_message: msg_type={msg_type} addr={addr}")
sock = self._get_push_socket(addr)
sock.send_multipart(message)
self.logger.info(f"Sent {msg_type} to {addr}")
except ConnectionError:
self.logger.warning(f"_send_message: Connection to {addr} not established")
except zmq.Again:
self.logger.warning(f"_send_message: Send queue full for {addr}")
except Exception as e:
self.logger.error(f"_send_message: Send to {addr} failed: {e}, {str(traceback.format_exc())}")
main_process_metrics.send_cache_failed_num.inc()
self._close_connection(addr)
except Exception as e:
self.logger.error(f"_send_message: Message preparation failed: {e}")
def _close_connection(self, addr):
"""
Close the connection to the specified address.
"""
if addr in self.push_sockets:
self.push_sockets[addr].close()
del self.push_sockets[addr]
def send_splitwise_tasks(self, tasks: List[Request], current_id):
"""
Send splitwise tasks to all connected addresses.
Parameters:
tasks (list): List of tasks.
current_id (int): Current ID.
"""
addr = None
decode_diagg = None
for task in tasks:
if task.disaggregate_info is None:
continue
if task.disaggregate_info["transfer_protocol"] == "ipc":
addr = task.disaggregate_info["cache_info"]["ipc"]["port"]
task.disaggregate_info["cache_info"]["ipc"]["current_id"] = current_id
self.logger.info(f"send_splitwise_tasks: protocol=ipc, addr={addr}, task={task.request_id}")
self.send_splitwise_tasks_innode([task], addr)
else:
addr = (
f"{task.disaggregate_info['cache_info']['rdma']['ip']}:"
+ f"{task.disaggregate_info['cache_info']['rdma']['port']}"
)
self.current_request_ids[task.request_id] = "init"
decode_diagg = task.disaggregate_info["cache_info"]
task.disaggregate_info["cache_info"] = self.cfg.disaggregate_info["cache_info"]
task.disaggregate_info["cache_info"]["rdma"]["current_id"] = current_id
task.disaggregate_info["role"] = "decode"
self.logger.info(f"send_splitwise_tasks: protocol=rdma, addr={addr}, task={task.request_id}")
self._send_message(addr, "prefill", [task])
task.disaggregate_info["cache_info"] = decode_diagg
task.disaggregate_info["role"] = "prefill"
def send_splitwise_tasks_innode(self, tasks, port):
"""
Send splitwise tasks to specific port.
Parameters:
tasks (list): List of tasks.
port (int): Port number.
Returns:
int: Current port number, -1 if tasks are not sent.
"""
current_port = -1
if port not in self.connect_innode_instances:
self.create_connection(port)
for task in tasks:
task.disaggregate_info["cache_info"]["ipc"]["port"] = self.cfg.parallel_config.engine_worker_queue_port[
self.local_data_parallel_id
]
self.logger.info(f"send_splitwise_tasks_innode: port={port}, tasks={[task.request_id for task in tasks]}")
self.connect_innode_instances[port].put_disaggregated_tasks(("decode", tasks))
for task in tasks:
task.disaggregate_info["cache_info"]["ipc"]["port"] = port
current_port = port
return current_port
def send_first_token(self, prefill_msg, tasks_list):
"""
send first token to specific port
"""
if not isinstance(tasks_list, list):
tasks_list = [tasks_list]
self.logger.info(f"send_first_token: send first token to decode, {[x.request_id for x in tasks_list]}")
if prefill_msg["transfer_protocol"] == "ipc":
port = prefill_msg["cache_info"]["ipc"]["port"]
if port not in self.connect_innode_instances:
self.create_connection(port)
self.connect_innode_instances[port].put_disaggregated_tasks(("decode", tasks_list))
else:
node = f"{prefill_msg['cache_info']['rdma']['ip']}:{prefill_msg['cache_info']['rdma']['port']}"
self.logger.info(f"send_first_token: send first token to port {node} decode")
self._send_message(node, "decode", tasks_list)
def create_connection(self, port):
"""
Create a connection to specific port.
Parameters:
port (int): Port number.
"""
if not envs.FD_ENGINE_TASK_QUEUE_WITH_SHM:
address = ("0.0.0.0", int(port))
else:
address = f"/dev/shm/fd_task_queue_{port}.sock"
self.connect_innode_instances[port] = EngineWorkerQueue(
address=address,
num_client=self.cfg.parallel_config.tensor_parallel_size,
client_id=0,
)
def check_decode_allocated(self, task):
self.logger.debug(f"start check decode allocated: {task.request_id}")
start_time = time.time()
if task.disaggregate_info is None:
return True, ""
if self.enable_decode_cache_task:
return True, ""
if task.disaggregate_info["role"] != "prefill":
return True, ""
while self.current_request_ids[task.request_id] == "init":
time.sleep(0.001)
if time.time() - start_time > envs.FD_PREFILL_WAIT_DECODE_RESOURCE_SECONDS:
del self.current_request_ids[task.request_id]
return False, "timeout"
msg = self.current_request_ids[task.request_id]
del self.current_request_ids[task.request_id]
if msg == "finished":
return True, ""
self.logger.error(f"check_decode_allocated: Receive_decode_allocated error: {msg}")
return False, msg
def send_cache_info_to_messager(self, tasks: List[Request], current_id):
"""
Prefill sends the request with allocated block ids to cache messager by engine worker queue.
args:
tasks (list): List of tasks.
current_id (int): Current id to indicate the prefill number.
"""
cache_info = []
for i in range(len(tasks)):
dsg_info = tasks[i].disaggregate_info
if dsg_info is None:
continue
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
info = {
"request_id": tasks[i].request_id,
"src_block_ids": tasks[i].block_tables,
"current_id": tasks[i].idx,
"need_prefill_tokens": tasks[i].need_prefill_tokens,
}
else:
if current_id == -1:
current_id = dsg_info["cache_info"]["ipc"]["current_id"]
info = {
"request_id": tasks[i].request_id,
"src_block_ids": tasks[i].block_tables,
"current_id": current_id,
}
cache_info.append(info)
self.logger.debug(f"send_cache_info_to_messager, {cache_info}")
self.engine_worker_queue.put_cache_info(cache_info)
def send_cache_info_to_prefill(self, tasks: List[Request]):
"""
Decode sends the request with allocated block ids to prefill.
args:
tasks (list): List of tasks.
"""
cache_info = dict()
for i in range(len(tasks)):
dsg_info = tasks[i].disaggregate_info
if dsg_info is None:
self.logger.debug(f"skip send_cache_infos_to_prefill, {tasks[i].request_id}")
continue
self.logger.debug(f"send_cache_infos_to_prefill, {dsg_info}")
if dsg_info["transfer_protocol"] == "ipc":
info = {
"request_id": tasks[i].request_id,
"device_ids": self.cfg.parallel_config.device_ids.split(","),
"transfer_protocol": "ipc",
"dest_block_ids": dsg_info["block_tables"],
}
if dsg_info["cache_info"]["ipc"]["port"] not in cache_info:
cache_info[dsg_info["cache_info"]["ipc"]["port"]] = []
cache_info[dsg_info["cache_info"]["ipc"]["port"]].append(info)
else:
if tasks[i].get("error_msg", None) is not None:
info = {
"request_id": tasks[i].request_id,
"error_msg": tasks[i].get("error_msg"),
}
else:
info = {
"request_id": tasks[i].request_id,
"device_ids": [self.cfg.parallel_config.device_ids.split(",")[self.local_data_parallel_id]],
"ip": self.cfg.host_ip,
"rdma_ports": [
self.cfg.disaggregate_info["cache_info"]["rdma"]["rdma_port"][self.local_data_parallel_id]
],
"transfer_protocol": "rdma",
"dest_block_ids": dsg_info["block_tables"],
"decode_tp_size": self.cfg.parallel_config.tensor_parallel_size,
}
addr = f"{dsg_info['cache_info']['rdma']['ip']}:" + f"{dsg_info['cache_info']['rdma']['port']}"
if addr not in cache_info:
cache_info[addr] = []
cache_info[addr].append(info)
self.logger.debug(f"send cache info to prefill, {cache_info}")
if len(cache_info):
for k, v in cache_info.items():
self.logger.info(f"{k} {v}")
if ":" in str(k):
self._send_message(k, "cache_sync", v)
else:
if k not in self.connect_innode_instances:
self.create_connection(k)
self.connect_innode_instances[k].put_cache_info(v)
def _serialize_message(self, msg_type: str, payload) -> bytes:
# TODO 压缩
if msg_type == "decode" or msg_type == "prefill":
payload = [output.to_dict() for output in payload]
# Prepare data
data = {"type": msg_type, "payload": payload}
# Pickle protocol 5 supports extracting large arrays (buffers)
buffers = []
# Serialize main data, strip large arrays as references into buffers
main_bytes = pickle.dumps(data, protocol=5, buffer_callback=buffers.append)
# Serialize using pickle protocol 5 which provides efficient handling
# of large numpy arrays through out-of-band buffers.
# Returns: [main_bytes, buffer1, buffer2, ...]
# where main_bytes contains the serialized structure and buffers contain
# the actual array data extracted for efficient transmission.
return [main_bytes] + buffers
def _deserialize_message(self, frames: List[bytes]):
"""
Deserialize message from ZMQ frames using pickle protocol 5.
Args:
frames: List of byte frames where:
- frames[0]: Identity frame (sender address)
- frames[1]: Main pickled data structure
- frames[2:]: Out-of-band buffers (numpy arrays)
Returns:
Tuple of (message_type: str, payload: Any)
"""
# identity = frames[0]
if len(frames) < 2:
raise ValueError(f"Received frames too short: expected at least 2 frames but got {len(frames)}")
main_bytes = frames[1]
buffers = frames[2:]
# Restore data, pickle will automatically fill buffers back into numpy arrays
message = pickle.loads(main_bytes, buffers=buffers)
return message["type"], message["payload"]
def _process_message(self, frames: List[bytes]):
"""
process message
"""
try:
msg_type, payload = self._deserialize_message(frames)
self.logger.info(f"_process_message: {msg_type}")
if msg_type == "prefill":
self._handle_prefill(payload)
elif msg_type == "decode":
self._handle_decode(payload)
elif msg_type == "cache_sync":
for task in payload:
self.logger.info(f"_process_message: cache_sync task: {task}")
current_status = task.get("error_msg", "finished")
self.current_request_ids[task["request_id"]] = current_status
if self.enable_decode_cache_task:
del self.current_request_ids[task["request_id"]]
if current_status == "finished":
self.engine_worker_queue.put_cache_info(payload)
except Exception as e:
self.logger.error(f"_process_message: Message processing failed: {e}, {str(traceback.format_exc())}")
def _handle_prefill(self, tasks):
"""
Handle prefill tasks from other nodes.
"""
self.logger.debug(f"_handle_prefill: receive payload {tasks}")
tasks_data = [Request.from_dict(task) for task in tasks]
self.engine_worker_queue.put_disaggregated_tasks(("decode", tasks_data))
def _handle_decode(self, payload):
"""
Handle decode tasks from other nodes.
"""
self.logger.debug(f"_handle_decode: receive payload {payload}")
tasks = []
for task in payload:
tasks.append(RequestOutput.from_dict(task))
self.engine_worker_queue.put_disaggregated_tasks(("decode", tasks))