Files
FastDeploy/tests/inter_communicator/test_e2w_queue.py
kevin cceaba1c8d [Feature] remove to_numpy (#5162)
* remove to_numpy

* update code

* update name

* update code

* update code

* update code
2025-11-21 21:54:26 +08:00

178 lines
5.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
import numpy as np
import paddle
from fastdeploy import envs
from fastdeploy.engine.request import Request
from fastdeploy.utils import to_numpy, to_tensor
class DummyTask:
def __init__(self, images):
self.multimodal_inputs = {"images": images}
class TestEngineWorkerQueue(unittest.TestCase):
def test_to_tensor_success(self):
envs.FD_ENABLE_MAX_PREFILL = 1
# 模拟 numpy 数组输入(使用 paddle 转 numpy
np_images = paddle.randn([2, 3, 224, 224]).numpy()
task = DummyTask(np_images)
tasks = [task]
to_tensor(tasks)
# 验证已转换为tensor
self.assertIsInstance(task.multimodal_inputs["images"], paddle.Tensor)
def test_to_tensor_disabled(self):
# 模拟 numpy 数组输入(使用 paddle 转 numpy
np_images = paddle.randn([2, 3, 224, 224]).numpy()
task = DummyTask(np_images)
tasks = [task]
to_tensor(tasks)
# 验证已转换为tensor
self.assertIsInstance(task.multimodal_inputs["images"], paddle.Tensor)
def test_to_tensor_no_multimodal_inputs(self):
class NoMMTask:
pass
task = NoMMTask()
tasks = [task]
# 不应抛异常
try:
to_tensor(tasks)
except Exception as e:
self.fail(f"Unexpected exception raised: {e}")
def test_to_tensor_exception_handling(self):
bad_task = DummyTask(images="not an array")
bad_tasks = [bad_task]
try:
to_tensor(bad_tasks)
except Exception as e:
self.fail(f"Exception should be handled internally, but got: {e}")
def test_to_numpy_success(self):
envs.FD_ENABLE_MAX_PREFILL = 1
# 构造 paddle.Tensor 输入
tensor_images = paddle.randn([2, 3, 224, 224])
task = DummyTask(tensor_images)
tasks = [task]
to_numpy(tasks)
# 验证转换为 numpy.ndarray
self.assertIsInstance(task.multimodal_inputs["images"], np.ndarray)
def test_to_numpy_disabled(self):
# 创建随机张量作为测试输入
tensor_images = paddle.randn([2, 3, 224, 224])
# 创建模拟任务
task = DummyTask(tensor_images)
tasks = [task]
# 调用转换方法(预期不会转换)
to_numpy(tasks)
self.assertIsInstance(task.multimodal_inputs["images"], np.ndarray)
def test_to_numpy_no_multimodal_inputs(self):
class NoMMTask:
pass
task = NoMMTask()
tasks = [task]
# 不应抛异常
try:
to_numpy(tasks)
except Exception as e:
self.fail(f"Unexpected exception raised: {e}")
def test_to_numpy_non_tensor_input(self):
envs.FD_ENABLE_MAX_PREFILL = 1
np_images = np.random.randn(2, 3, 224, 224)
task = DummyTask(np_images)
tasks = [task]
to_numpy(tasks)
# 非 Tensor 输入应保持为 numpy 数组
self.assertIsInstance(task.multimodal_inputs["images"], np.ndarray)
def test_to_numpy_exception_handling(self):
envs.FD_ENABLE_MAX_PREFILL = 1
# 构造错误输入(让 .numpy() 抛异常)
class BadTensor:
def numpy(self):
raise RuntimeError("mock error")
bad_task = DummyTask(images=BadTensor())
bad_tasks = [bad_task]
try:
to_numpy(bad_tasks)
except Exception as e:
self.fail(f"Exception should be handled internally, but got: {e}")
def test_features_info_to_tensor(self):
envs.FD_ENABLE_MAX_PREFILL = 1
np_feature = paddle.randn([2, 3, 224, 224]).numpy()
multimodal_inputs = {
"image_features": [np_feature, np_feature],
}
req_dict = {
"request_id": "req1",
"multimodal_inputs": multimodal_inputs,
}
task = Request.from_dict(req_dict)
to_tensor([task])
# 验证已转换为tensor
self.assertEqual(len(task.multimodal_inputs["image_features"]), 2)
self.assertIsInstance(task.multimodal_inputs["image_features"][0], paddle.Tensor)
self.assertIsInstance(task.multimodal_inputs["image_features"][1], paddle.Tensor)
def test_features_info_to_numpy(self):
envs.FD_ENABLE_MAX_PREFILL = 1
tensor_feature = paddle.randn([2, 3, 224, 224])
multimodal_inputs = {
"video_features": [tensor_feature, tensor_feature],
}
req_dict = {
"request_id": "req1",
"multimodal_inputs": multimodal_inputs,
}
task = Request.from_dict(req_dict)
to_numpy([task])
# 验证已转换为ndarray
self.assertEqual(len(task.multimodal_inputs["video_features"]), 2)
self.assertIsInstance(task.multimodal_inputs["video_features"][0], np.ndarray)
self.assertIsInstance(task.multimodal_inputs["video_features"][1], np.ndarray)
if __name__ == "__main__":
unittest.main()