Files
FastDeploy/tests/entrypoints/test_chat.py
ltd0924 fb76cdfb4f
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Fearture] Support mm model close prefix cache (#4459)
* [Feature] support prefix cache in DP

* fix

* Update common_engine.py

* Update common_engine.py

* Update common_engine.py

* Update common_engine.py

* [BugFix] fix workers more than 1

* fix

* Update api_server.py

* fix

* Update api_server.py

* fix

* [Fearture] Support mm model close prefix cache

* Update api_server.py

* Update engine_client.py

* Update engine_client.py

* add test

* Update test_chat.py

* fix

* fix

* Update test_chat.py

* Update test_chat.py

---------

Co-authored-by: ltd0924 <luotingdan@baidu.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-10-21 15:37:59 +08:00

196 lines
12 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import unittest
import weakref
from fastdeploy.entrypoints.llm import LLM
from fastdeploy.entrypoints.openai.protocol import ChatCompletionToolsParam
MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle"
class TestChat(unittest.TestCase):
"""Test case for chat functionality"""
COMMON_PREFIX = "I am a highly capable, compassionate, and trustworthy AI assistant dedicated to providing you with exceptional support. Whatever questions or challenges you may have, I will utilize my full capabilities to offer thoughtful and comprehensive assistance. As your intelligent companion, I consistently maintain honesty, transparency, and patience to ensure our interactions are both productive and enjoyable."
PROMPTS = [
[{"content": "PaddlePaddle is ", "role": "user"}],
[{"content": COMMON_PREFIX + "The color of tomato is ", "role": "user"}],
[{"content": COMMON_PREFIX + "The equation 2+3= ", "role": "user"}],
[{"content": COMMON_PREFIX + "The equation 4-1= ", "role": "user"}],
]
@classmethod
def setUpClass(cls):
try:
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=4096,
tensor_parallel_size=1,
engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")),
cache_queue_port=int(os.getenv("FD_CACHE_QUEUE_PORT")),
)
cls.llm = weakref.proxy(llm)
except Exception as e:
print(f"Setting up LLM failed: {e}")
raise unittest.SkipTest(f"LLM initialization failed: {e}")
@classmethod
def tearDownClass(cls):
"""Clean up after all tests have run"""
if hasattr(cls, "llm"):
del cls.llm
def test_chat(self):
outputs = self.llm.chat(messages=self.PROMPTS, sampling_params=None)
self.assertEqual(len(self.PROMPTS), len(outputs))
self.assertEqual(outputs[-1].num_cached_tokens, outputs[-2].num_cached_tokens)
self.assertEqual(outputs[-1].num_cached_tokens, 64)
def test_chat_with_tools(self):
"""Test chat with tools:
1. spliced_message (after chat_template) contains tool-related content
2. Model output contains tool_call
"""
prompts = [{"role": "user", "content": "北京海淀区今天天气怎么样?用摄氏度表示温度。"}]
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Determine weather in my location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"additionalProperties": False,
"required": ["location", "unit"],
},
"strict": True,
},
}
]
chat_template = "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '' in content %}\n {%- set reasoning_content = content.split('')[0].rstrip('\\n').split('')[-1].lstrip('\\n') %}\n {%- set content = content.split('')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n\\n' + reasoning_content.strip('\\n') + '\\n\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '\\n\\n\\n\\n' }}\n {%- endif %}\n{%- endif %}"
data_processor = self.llm.llm_engine.data_processor
captured_spliced_message = None
def capture_spliced_message(request_or_messages, **kwargs):
"""Wrap original messages2ids to capture spliced_message"""
token_ids = data_processor.original_messages2ids(request_or_messages, **kwargs)
nonlocal captured_spliced_message
captured_spliced_message = request_or_messages.get("prompt_tokens")
return token_ids
data_processor.original_messages2ids = data_processor.messages2ids
data_processor.messages2ids = capture_spliced_message
try:
outputs = self.llm.chat(
messages=prompts,
tools=tools,
chat_template=chat_template,
chat_template_kwargs={"enable_thinking": False},
stream=False,
)
self.assertIsNotNone(captured_spliced_message, "Failed to capture spliced_message from messages2ids")
self.assertIn(
"<tools>",
captured_spliced_message,
f"spliced_message '{captured_spliced_message}' missing <tools> tag (chat_template not applied)",
)
output = outputs[0]
self.assertEqual(len(prompts), len(outputs))
self.assertTrue(hasattr(output, "outputs"))
self.assertTrue(hasattr(output.outputs, "text"))
finally:
data_processor.messages2ids = data_processor.original_messages2ids
def test_validate_tools(self):
"""Test both valid and invalid scenarios for _validate_tools method"""
# Prepare valid test data
valid_tool_dict = {
"type": "function",
"function": {
"name": "get_weather",
"description": "Get real-time weather of a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]},
},
}
valid_tool_model = ChatCompletionToolsParam(**valid_tool_dict)
valid_model_list = [valid_tool_model, valid_tool_model]
valid_dict_list = [valid_tool_dict, valid_tool_dict]
# Test valid scenarios
# 1. Input is None
self.assertIsNone(self.llm._validate_tools(None))
# 2. Input is single ChatCompletionToolsParam instance
result = self.llm._validate_tools(valid_tool_model)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], ChatCompletionToolsParam)
# 3. Input is list of ChatCompletionToolsParam instances
self.assertEqual(self.llm._validate_tools(valid_model_list), valid_model_list)
# 4. Input is single valid dict
result = self.llm._validate_tools(valid_tool_dict)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], dict)
self.assertEqual(result[0]["type"], "function")
# 5. Input is list of valid dicts
result = self.llm._validate_tools(valid_dict_list)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[1], dict)
# 6. Input is empty list
self.assertIsNone(self.llm._validate_tools([]))
# Test invalid scenarios (should raise ValueError)
# 1. Input is string (invalid top-level type)
with self.assertRaises(ValueError):
self.llm._validate_tools("invalid_string")
# 2. Input list contains non-dict element
with self.assertRaises(ValueError):
self.llm._validate_tools([valid_tool_dict, 123])
# 3. Tool dict missing required field (function.name)
invalid_tool_missing_name = {"type": "function", "function": {"description": "Missing 'name' field"}}
with self.assertRaises(ValueError):
self.llm._validate_tools(invalid_tool_missing_name)
# 4. Tool dict with wrong 'type' value
invalid_tool_wrong_type = {"type": "invalid_type", "function": {"name": "test", "description": "Wrong type"}}
with self.assertRaises(ValueError):
self.llm._validate_tools(invalid_tool_wrong_type)
# 5. Input is boolean
with self.assertRaises(ValueError):
self.llm._validate_tools(True)
if __name__ == "__main__":
unittest.main()