Files
FastDeploy/fastdeploy/entrypoints/openai/serving_chat.py
Jiang-Jia-Jun e11331927f [Sync Code] Update vs branch (#3403)
* Pre ce modified (#3335) (#3360)

* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)

* [Bug Fix] Fix V1 video bug (#3387)

* fix stopseq error info (#3342)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [BugFix] Fix default log level of paddleformers (#3377)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [Polish Code] Remove useless notes

* feat(log):add_request_and_response_log (#3392)

* Optimize CI execution workflow. (#3371) (#3384)

* fix

* [BugFix] fix control signal release failed (#3374)

* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

---------

Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
Co-authored-by: xiaolei373 <zley373@gmail.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
2025-08-14 17:14:45 +08:00

561 lines
24 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import asyncio
import time
import traceback
import uuid
from typing import List, Optional
import aiozmq
import msgpack
import numpy as np
from aiozmq import zmq
from fastdeploy.entrypoints.openai.protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatMessage,
DeltaMessage,
ErrorResponse,
LogProbEntry,
LogProbs,
PromptTokenUsageInfo,
UsageInfo,
)
from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.utils import api_server_logger, get_host_ip
from fastdeploy.worker.output import LogprobsLists
class OpenAIServingChat:
"""
OpenAI-style chat completions serving
"""
def __init__(self, engine_client, pid, ips, max_waiting_time):
self.engine_client = engine_client
self.pid = pid
self.master_ip = ips
self.max_waiting_time = max_waiting_time
self.host_ip = get_host_ip()
if self.master_ip is not None:
if isinstance(self.master_ip, list):
self.master_ip = self.master_ip[0]
else:
self.master_ip = self.master_ip.split(",")[0]
def _check_master(self):
if self.master_ip is None:
return True
if self.host_ip == self.master_ip:
return True
return False
async def create_chat_completion(self, request: ChatCompletionRequest):
"""
Create a new chat completion using the specified parameters.
"""
if not self._check_master():
err_msg = f"Only master node can accept completion request, please send request to master node: {self.pod_ips[0]}"
api_server_logger.error(err_msg)
return ErrorResponse(message=err_msg, code=400)
try:
if self.max_waiting_time < 0:
await self.engine_client.semaphore.acquire()
else:
await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
api_server_logger.debug(f"current waiting request {self.engine_client.semaphore.status()}")
if request.user is not None:
request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
else:
request_id = f"chatcmpl-{uuid.uuid4()}"
api_server_logger.info(f"create chat completion request: {request_id}")
text_after_process = None
try:
current_req_dict = request.to_dict_for_infer(request_id)
current_req_dict["arrival_time"] = time.time()
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
text_after_process = current_req_dict.get("text_after_process")
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
except Exception as e:
return ErrorResponse(code=400, message=str(e))
del current_req_dict
if request.stream:
return self.chat_completion_stream_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
else:
try:
return await self.chat_completion_full_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
except Exception as e:
return ErrorResponse(code=400, message=str(e))
except Exception:
return ErrorResponse(code=408, message=f"Request queued time exceed {self.max_waiting_time}")
def _create_streaming_error_response(self, message: str) -> str:
error_response = ErrorResponse(
code=400,
message=message,
)
return error_response.model_dump_json()
async def chat_completion_stream_generator(
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Streaming chat completion generator.
"""
created_time = int(time.time())
chunk_object_type: str = "chat.completion.chunk"
first_iteration = True
previous_num_tokens = 0
num_prompt_tokens = 0
num_choices = 1
tool_called = False
max_streaming_response_tokens = (
request.max_streaming_response_tokens
if request.max_streaming_response_tokens is not None
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
) # dierctly passed & passed in metadata
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
if enable_thinking is None:
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
include_stop_str_in_output = request.include_stop_str_in_output
stream_options = request.stream_options
if stream_options is None:
include_usage = False
include_continuous_usage = False
else:
include_usage = stream_options.include_usage
include_continuous_usage = stream_options.continuous_usage_stats
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[],
model=model_name,
)
try:
dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
dealer.write([b"", request_id.encode("utf-8")])
choices = []
current_waiting_time = 0
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.01)
continue
response = msgpack.unpackb(raw_data[-1])
for res in response:
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
self.engine_client.data_processor.process_response_dict(
res,
stream=True,
enable_thinking=enable_thinking,
include_stop_str_in_output=include_stop_str_in_output,
)
if res["metrics"]["first_token_time"] is not None:
arrival_time = res["metrics"]["first_token_time"]
inference_start_time = res["metrics"]["inference_start_time"]
else:
arrival_time = res["metrics"]["arrival_time"] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
role="assistant",
content="",
reasoning_content="",
tool_calls=None,
prompt_token_ids=None,
completion_token_ids=None,
),
)
if request.return_token_ids:
choice.delta.prompt_token_ids = list(prompt_token_ids)
choice.delta.text_after_process = text_after_process
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name,
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens),
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
api_server_logger.info(f"Chat Streaming response send_idx 0: {chunk.model_dump_json()}")
first_iteration = False
output = res["outputs"]
delta_text = output["text"]
output_top_logprobs = output["top_logprobs"]
previous_num_tokens += len(output["token_ids"])
logprobs_res: Optional[LogProbs] = None
if request.logprobs and output_top_logprobs is not None:
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
if self.engine_client.data_processor.tool_parser_obj and not res["finished"]:
tool_delta_message = output["tool_delta_message"]
if tool_delta_message is None:
continue
delta_message = tool_delta_message
delta_message.reasoning_content = output.get("reasoning_content")
if delta_message.tool_calls:
tool_called = True
else:
delta_message = DeltaMessage(
content=delta_text,
reasoning_content=output.get("reasoning_content"),
prompt_token_ids=None,
completion_token_ids=None,
tool_calls=None,
)
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time,
)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(
time.time() - res["metrics"]["request_start_time"]
)
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if tool_called:
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
if request.return_token_ids:
choice.delta.completion_token_ids = list(output["token_ids"])
choice.delta.raw_prediction = output.get("raw_prediction")
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens,
)
choices.append(choice)
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
# 打印尾包
if res["finished"]:
api_server_logger.info(f"Chat Streaming response last send: {chunk.model_dump_json()}")
choices = []
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
if include_usage:
completion_tokens = previous_num_tokens
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=num_prompt_tokens + completion_tokens,
)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[],
model=model_name,
usage=usage,
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
except Exception as e:
error_data = self._create_streaming_error_response(str(e))
yield f"data: {error_data}\n\n"
finally:
dealer.close()
self.engine_client.semaphore.release()
api_server_logger.info(f"release {self.engine_client.semaphore.status()}")
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Full chat completion generator.
"""
created_time = int(time.time())
final_res = None
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
if enable_thinking is None:
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
include_stop_str_in_output = request.include_stop_str_in_output
try:
dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
dealer.write([b"", request_id.encode("utf-8")])
final_res = None
previous_num_tokens = 0
current_waiting_time = 0
logprob_contents = []
completion_token_ids = []
while True:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
response = msgpack.unpackb(raw_data[-1])
task_is_finished = False
for data in response:
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
data = self.engine_client.data_processor.process_response_dict(
data,
stream=False,
enable_thinking=enable_thinking,
include_stop_str_in_output=include_stop_str_in_output,
)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
completion_token_ids.extend(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
output_top_logprobs = output["top_logprobs"]
if output_top_logprobs is not None:
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
task_is_finished = True
break
if task_is_finished:
break
finally:
dealer.close()
self.engine_client.semaphore.release()
api_server_logger.info(f"release {self.engine_client.semaphore.status()}")
choices = []
output = final_res["outputs"]
message = ChatMessage(
role="assistant",
content=output["text"],
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call"),
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
completion_token_ids=completion_token_ids if request.return_token_ids else None,
text_after_process=text_after_process if request.return_token_ids else None,
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
)
logprobs_full_res = None
if logprob_contents:
logprobs_full_res = LogProbs(content=logprob_contents)
choice = ChatCompletionResponseChoice(
index=0,
message=message,
logprobs=logprobs_full_res,
finish_reason=None,
)
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if output.get("tool_call"):
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]:
choice.finish_reason = "recover_stop"
choices.append(choice)
num_prompt_tokens = len(prompt_token_ids)
num_generated_tokens = previous_num_tokens
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0)),
)
work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
res = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
api_server_logger.info(f"Chat response: {res.model_dump_json()}")
return res
def _create_chat_logprobs(
self,
output_top_logprobs,
request_logprobs: Optional[bool] = None,
request_top_logprobs: Optional[int] = None,
) -> Optional[LogProbs]:
"""Create OpenAI-style logprobs for chat completions."""
if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
return None
logprobs_res: Optional[LogProbs] = None
for logprob_token_ids, logprobs, sampled_token_ranks in zip(
output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
):
top_logprobs = LogprobsLists(
logprob_token_ids=[logprob_token_ids],
logprobs=[logprobs],
sampled_token_ranks=[sampled_token_ranks],
)
step_logprobs_res = self._build_logprobs_response(
request_logprobs=request_logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request_top_logprobs,
)
if logprobs_res is None:
logprobs_res = step_logprobs_res
else:
logprobs_res.content.extend(step_logprobs_res.content)
return logprobs_res
def _build_logprobs_response(
self,
request_logprobs: bool,
response_logprobs: Optional[LogprobsLists],
request_top_logprobs: int,
) -> Optional[LogProbs]:
"""
Construct a logprobs response object in line with the OpenAI style.
Retain the complete top-k candidates and avoid circular references.
"""
# Parameter validation
if (
response_logprobs is None
or not request_logprobs
or request_top_logprobs is None
or request_top_logprobs < 0
):
return None
try:
# The top-k candidates for the current token
topk_token_ids = []
topk_logprobs = []
if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
# Construct the candidate token structure (LogProbEntry) of topk
top_logprob_entries: List[LogProbEntry] = []
for tid, lp in zip(topk_token_ids, topk_logprobs):
token_str = self.engine_client.data_processor.process_logprob_response(
[tid], clean_up_tokenization_spaces=False
)
token_bytes = token_str.encode("utf-8", errors="replace")
if "\ufffd" in token_str:
token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
entry = LogProbEntry(token=token_str, logprob=lp, bytes=list(token_bytes))
top_logprob_entries.append(entry)
# Construct the sampled token object (avoid sharing references with top_logprob_entries)
sampled_entry = LogProbEntry(
token=top_logprob_entries[0].token,
logprob=top_logprob_entries[0].logprob,
bytes=top_logprob_entries[0].bytes,
top_logprobs=top_logprob_entries[1:], # Here are the complete topk candidates
)
return LogProbs(content=[sampled_entry])
except Exception as e:
api_server_logger.error("Error in _build_logprobs_response: %s", e)
api_server_logger.error(traceback.format_exc())
return None