Files
FastDeploy/fastdeploy/entrypoints/engine_client.py
Jiang-Jia-Jun e11331927f [Sync Code] Update vs branch (#3403)
* Pre ce modified (#3335) (#3360)

* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)

* [Bug Fix] Fix V1 video bug (#3387)

* fix stopseq error info (#3342)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [BugFix] Fix default log level of paddleformers (#3377)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [Polish Code] Remove useless notes

* feat(log):add_request_and_response_log (#3392)

* Optimize CI execution workflow. (#3371) (#3384)

* fix

* [BugFix] fix control signal release failed (#3374)

* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

---------

Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
Co-authored-by: xiaolei373 <zley373@gmail.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
2025-08-14 17:14:45 +08:00

334 lines
13 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import time
import uuid
import numpy as np
from fastdeploy import envs
from fastdeploy.input.preprocess import InputPreprocessor
from fastdeploy.inter_communicator import IPCSignal, ZmqClient
from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.platforms import current_platform
from fastdeploy.utils import EngineError, StatefulSemaphore, api_server_logger
class EngineClient:
"""
EngineClient is a class that handles the communication between the client and the server.
"""
def __init__(
self,
tokenizer,
max_model_len,
tensor_parallel_size,
pid,
limit_mm_per_prompt,
mm_processor_kwargs,
enable_mm=False,
reasoning_parser=None,
data_parallel_size=1,
enable_logprob=False,
workers=1,
tool_parser=None,
):
input_processor = InputPreprocessor(
tokenizer,
reasoning_parser,
limit_mm_per_prompt,
mm_processor_kwargs,
enable_mm,
tool_parser,
)
self.enable_logprob = enable_logprob
self.enable_mm = enable_mm
self.reasoning_parser = reasoning_parser
self.data_processor = input_processor.create_processor()
self.max_model_len = max_model_len
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
array_size = min(max_chips_per_node, tensor_parallel_size * data_parallel_size)
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=self.worker_healthy_live_recorded_time_array,
dtype=np.int32,
suffix=pid,
create=False,
)
model_weights_status = np.zeros([1], dtype=np.int32)
self.model_weights_status_signal = IPCSignal(
name="model_weights_status",
array=model_weights_status,
dtype=np.int32,
suffix=pid,
create=False,
)
self.semaphore = StatefulSemaphore((envs.FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
def create_zmq_client(self, model, mode):
"""
Create a ZMQ client.
"""
self.zmq_client = ZmqClient(model, mode)
self.zmq_client.connect()
def format_and_add_data(self, prompts: dict):
"""
Format the request data and send the request to the server.
"""
if "request_id" not in prompts:
request_id = str(uuid.uuid4())
prompts["request_id"] = request_id
if "max_tokens" not in prompts:
prompts["max_tokens"] = self.max_model_len - 1
self.add_requests(prompts)
return prompts["prompt_token_ids"]
def add_requests(self, task):
"""
Add a new request to the queue.
Args:
task: Request A dictionary representing the request.
sampling_params: A dictionary representing the sampling parameters.
Returns:
None
"""
task["preprocess_start_time"] = time.time()
try:
self.data_processor.process_request_dict(task, self.max_model_len)
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
input_ids_len = task["prompt_token_ids_len"]
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
if task.get("reasoning_max_tokens", None) is None:
task["reasoning_max_tokens"] = max(int(task["max_tokens"] * 0.8), 1)
min_tokens = task.get("min_tokens", 1)
if "messages" in task:
del task["messages"]
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
work_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
work_process_metrics.prompt_tokens_total.inc(input_ids_len)
work_process_metrics.request_prompt_tokens.observe(input_ids_len)
except Exception as e:
api_server_logger.error(e)
raise EngineError(str(e), error_code=400)
if input_ids_len + min_tokens >= self.max_model_len:
error_msg = (
f"Input text is too long, input_ids_len ({input_ids_len}) "
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
if input_ids_len > self.max_model_len:
error_msg = (
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
if "stop_seqs_len" in task:
stop_seqs_len = task["stop_seqs_len"]
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
if len(stop_seqs_len) > max_stop_seqs_num:
error_msg = (
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
for single_stop_seq_len in stop_seqs_len:
if single_stop_seq_len > stop_seqs_max_len:
error_msg = (
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
task["preprocess_end_time"] = time.time()
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
api_server_logger.info(
f"Cache request with request_id ({task.get('request_id')}), "
f"preprocess time cost {preprocess_cost_time}"
)
self.vaild_parameters(task)
api_server_logger.debug(f"Recieve task: {task}")
try:
if not self.enable_mm:
self.zmq_client.send_json(task)
else:
self.zmq_client.send_pyobj(task)
except Exception as e:
api_server_logger.error(e)
raise EngineError(str(e), error_code=400)
def vaild_parameters(self, data):
"""
Validate stream options
"""
if data.get("n"):
if data["n"] != 1:
raise ValueError("n only support 1.")
if data.get("max_tokens"):
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
raise ValueError(f"max_tokens can be defined [1, {self.max_model_len}).")
if data.get("reasoning_max_tokens"):
if data["reasoning_max_tokens"] > data["max_tokens"] or data["reasoning_max_tokens"] < 1:
raise ValueError("reasoning_max_tokens must be between max_tokens and 1")
if data.get("top_p"):
if data["top_p"] > 1 or data["top_p"] < 0:
raise ValueError("top_p value can only be defined [0, 1].")
if data.get("frequency_penalty"):
if not -2.0 <= data["frequency_penalty"] <= 2.0:
raise ValueError("frequency_penalty must be in [-2, 2]")
if data.get("temperature"):
if data["temperature"] < 0:
raise ValueError("temperature must be non-negative")
if data.get("presence_penalty"):
if not -2.0 <= data["presence_penalty"] <= 2.0:
raise ValueError("presence_penalty must be in [-2, 2]")
if data.get("seed"):
if not 0 <= data["seed"] <= 922337203685477580:
raise ValueError("seed must be in [0, 922337203685477580]")
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
# logprobs
logprobs = data.get("logprobs")
top_logprobs = None
if isinstance(logprobs, bool) and logprobs:
if not self.enable_logprob:
err_msg = "Logprobs is disabled, please enable it in startup config."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
top_logprobs = data.get("top_logprobs")
elif isinstance(logprobs, int):
top_logprobs = logprobs
elif logprobs:
raise ValueError("Invalid type for 'logprobs'")
# enable_logprob
if top_logprobs:
if not self.enable_logprob:
err_msg = "Logprobs is disabled, please enable it in startup config."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if not isinstance(top_logprobs, int):
err_type = type(top_logprobs).__name__
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if top_logprobs < 0:
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if top_logprobs > 20:
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
def check_health(self, time_interval_threashold=30):
"""
Check the health of the model server by checking whether all workers are alive.
"""
if self.worker_healthy_live_signal.value[0]:
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
if elapsed_time > time_interval_threashold:
return False, "Worker Service Not Healthy"
return True, ""
def is_workers_alive(self):
"""
Check the health of the model server by checking whether all workers are alive.
"""
if self.model_weights_status_signal.value[0] == 0:
return True, ""
else:
return False, "No model weight enabled"
def update_model_weight(self, timeout=300):
"""
Update the model weight by sending a signal to the server.
1 : worker receive the signal and start to update model weight
2 : worker update finish and notify client
"""
if self.model_weights_status_signal.value[0] == 0:
return True, ""
if self.model_weights_status_signal.value[0] == 1:
return False, "updating model weight already"
self.model_weights_status_signal.value[0] = 1
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
while self.model_weights_status_signal.value[0] != 0 and timeout != 0:
time.sleep(1)
timeout -= 1
continue
if self.model_weights_status_signal.value[0] != 0:
return False, "Update model weight timeout"
time.sleep(1)
return True, ""
def clear_load_weight(self, timeout=300):
"""
Clear the load weight status.
-1 : worker receive the signal and start to clear model weight
-2 : worker clear finish and notify client
"""
if self.model_weights_status_signal.value[0] == -2:
return True, ""
if self.model_weights_status_signal.value[0] == -1:
return False, "clearing model weight already"
self.model_weights_status_signal.value[0] = -1
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
while self.model_weights_status_signal.value[0] != -2 and timeout != 0:
time.sleep(1)
timeout -= 1
continue
if self.model_weights_status_signal.value[0] != -2:
return False, "clear model weight timeout"
time.sleep(1)
return True, ""