Files
FastDeploy/fastdeploy/engine/sched/resource_manager_v1.py
Jiang-Jia-Jun e11331927f [Sync Code] Update vs branch (#3403)
* Pre ce modified (#3335) (#3360)

* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)

* [Bug Fix] Fix V1 video bug (#3387)

* fix stopseq error info (#3342)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [BugFix] Fix default log level of paddleformers (#3377)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [Polish Code] Remove useless notes

* feat(log):add_request_and_response_log (#3392)

* Optimize CI execution workflow. (#3371) (#3384)

* fix

* [BugFix] fix control signal release failed (#3374)

* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

---------

Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
Co-authored-by: xiaolei373 <zley373@gmail.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
2025-08-14 17:14:45 +08:00

444 lines
22 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import threading
import time
from collections import deque
from collections.abc import Iterable
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from typing import Union
import numpy as np
import paddle
from fastdeploy.engine.request import Request, RequestStatus, RequestType
from fastdeploy.engine.resource_manager import ResourceManager
from fastdeploy.utils import llm_logger
@dataclass
class ScheduledDecodeTask:
"""
Task for allocating new blocks to decode.
"""
idx: int
request_id: str
block_tables: list[int]
task_type: RequestType = RequestType.DECODE
@dataclass
class ScheduledPreemptTask:
"""
Task for terminating inference to recycle resource.
"""
idx: int
request_id: str
task_type: RequestType = RequestType.PREEMPTED
class ResourceManagerV1(ResourceManager):
"""
Resource manager for scheduler v1.
In scheduler v1, all gpu blocks are managed by PrefixCacheManager.
Tasks sent to worker are divided into 3 types, PREFILL、DECODE and PREEMPTED.
For prefill task, the worker infer with one step and then stopped for this query if not all prompt tokens are computed.
For decode task, the work continues to decode until allocated blocks are exhausted.
For preempted task, the work reset all inputs to terminate the inference.
"""
def __init__(self, max_num_seqs, config, tensor_parallel_size, splitwise_role, local_data_parallel_id=0):
super(ResourceManagerV1, self).__init__(
max_num_seqs, config, tensor_parallel_size, splitwise_role, local_data_parallel_id
)
# req_id -> Request
self.config = config
self.requests: dict[str, Request] = {}
# Priority queues for requests.
self.waiting: deque[Request] = deque()
self.running: list[Request] = []
self.finish_execution_pool = ThreadPoolExecutor(max_workers=1)
self.lock = threading.Lock()
self.to_be_rescheduled_request_id_set = set()
def allocated_slots(self, request: Request):
return len(request.block_tables) * self.config.cache_config.block_size
def get_new_block_nums(self, request: Request, num_new_tokens: int):
self.check_and_free_block_tables()
return (
request.num_computed_tokens + num_new_tokens + self.config.cache_config.block_size - 1
) // self.config.cache_config.block_size - len(request.block_tables)
def _prepare_prefill_task(self, request, new_token_num):
request.prefill_start_index = request.num_computed_tokens
request.prefill_end_index = request.num_computed_tokens + new_token_num
request.task_type = RequestType.PREFILL
return request
def _prepare_decode_task(self, request):
return ScheduledDecodeTask(idx=request.idx, request_id=request.request_id, block_tables=request.block_tables)
def _prepare_preempt_task(self, request):
return ScheduledPreemptTask(idx=request.idx, request_id=request.request_id)
def reschedule_preempt_task(self, request_id):
with self.lock:
if request_id in self.to_be_rescheduled_request_id_set and request_id in self.requests:
request = self.requests[request_id]
self.waiting.appendleft(request)
self.to_be_rescheduled_request_id_set.remove(request_id)
def _trigger_preempt(self, request, num_new_blocks, preempted_reqs, scheduled_reqs):
can_schedule = True
while True:
if not self.cache_manager.can_allocate_gpu_blocks(num_new_blocks):
preempted_req = self.running.pop()
preempted_req.status = RequestStatus.PREEMPTED
preempted_req.num_computed_tokens = 0
preempted_req.prefill_block_num = 0
self._free_blocks(preempted_req)
self.to_be_rescheduled_request_id_set.add(preempted_req.request_id)
preempted_reqs.append(preempted_req)
scheduled_reqs.append(self._prepare_preempt_task(preempted_req))
if preempted_req == request:
# No more request to preempt.
can_schedule = False
break
else:
# The request can be scheduled.
can_schedule = True
break
return can_schedule
def _get_num_new_tokens(self, request, token_budget):
num_new_tokens = request.need_prefill_tokens - request.num_computed_tokens
num_new_tokens = min(num_new_tokens, token_budget)
if not self.config.enable_mm:
return num_new_tokens
inputs = request.multimodal_inputs
request.with_image = False
# Compatible with scenarios without images and videos.
if inputs["images"] is None:
return num_new_tokens
input_ids_lst = request.prompt_token_ids + request.output_token_ids
input_ids = paddle.to_tensor(input_ids_lst, dtype="int64")
input_ids = paddle.to_tensor(input_ids_lst, dtype="int64")
image_patch_id = inputs["image_patch_id"]
if request.multimodal_img_boundaries is None:
grid_thw = []
for one in inputs["grid_thw"]:
if one[0] == 1:
grid_thw.append(one)
else:
grid_thw.extend([[2, one[1], one[2]]] * (one[0] // 2))
grid_thw = paddle.to_tensor(grid_thw, dtype="int64")
from fastdeploy.model_executor.ops.gpu import get_img_boundaries
request.multimodal_img_boundaries = get_img_boundaries(
task_input_ids=input_ids, grid_thw=grid_thw, image_patch_id=image_patch_id
).numpy()
grid_thw = grid_thw.numpy().reshape([-1, 3])
inputs["grid_thw"] = grid_thw
grid_thw = inputs["grid_thw"]
img_boundaries_idx = request.multimodal_img_boundaries[0]
img_num_per_boundary = request.multimodal_img_boundaries[1]
ori_prompt_len = img_boundaries_idx[-1].item()
pre_end_idx = request.num_computed_tokens
new_end_idx = pre_end_idx + num_new_tokens
if new_end_idx < ori_prompt_len and input_ids[new_end_idx - 1] == image_patch_id:
boundary_idx = np.searchsorted(img_boundaries_idx, new_end_idx, side="left").item()
if boundary_idx == len(img_boundaries_idx):
new_end_idx = ori_prompt_len
else:
new_end_idx = img_boundaries_idx[boundary_idx].item()
elif new_end_idx >= ori_prompt_len and paddle.sum(input_ids[pre_end_idx:new_end_idx] == image_patch_id):
new_end_idx = ori_prompt_len
num_new_tokens = new_end_idx - pre_end_idx
image_mask = input_ids[pre_end_idx:new_end_idx] == image_patch_id
request.with_image = image_mask.any()
if request.with_image:
pre_boundary_idx = np.searchsorted(img_boundaries_idx, pre_end_idx, side="left").item()
if pre_boundary_idx == len(img_boundaries_idx):
request.num_image_start = img_num_per_boundary[-1]
else:
pre_boundary_idx = (
pre_boundary_idx if pre_end_idx == img_boundaries_idx[pre_boundary_idx] else pre_boundary_idx - 1
)
request.num_image_start = img_num_per_boundary[pre_boundary_idx]
new_boundary_idx = np.searchsorted(img_boundaries_idx, new_end_idx, side="left").item()
if new_boundary_idx == len(img_boundaries_idx):
request.num_image_end = img_num_per_boundary[-1]
else:
new_boundary_idx = (
new_boundary_idx if new_end_idx == img_boundaries_idx[new_boundary_idx] else new_boundary_idx - 1
)
request.num_image_end = img_num_per_boundary[new_boundary_idx]
request.image_type_ids_start = np.sum(grid_thw[: request.num_image_start, 0])
request.image_type_ids_end = np.sum(grid_thw[: request.num_image_end, 0])
request.image_start = np.sum(np.prod(grid_thw[: request.num_image_start], axis=1))
request.image_end = np.sum(np.prod(grid_thw[: request.num_image_end], axis=1))
return num_new_tokens
def exist_prefill(self, scheduled_reqs):
for request in scheduled_reqs:
if request.task_type == RequestType.PREFILL:
return True
return False
def schedule(self):
with self.lock:
scheduled_reqs: list[Request] = []
preempted_reqs: list[Request] = []
token_budget = self.config.max_num_batched_tokens
# First, schedule the RUNNING requests.
req_index = 0
num_decoding_req_nums = 0
while req_index < len(self.running) and token_budget > 0:
request = self.running[req_index]
if request.num_computed_tokens >= request.need_prefill_tokens: # to be decoding
if request.num_total_tokens > request.need_prefill_tokens: # has generated tokens
request.num_computed_tokens = request.num_total_tokens - 1
else: # prefill finished
if (
self.config.cache_config.enable_prefix_caching
and request.get("prefill_block_num", None) is None
):
# update prefill cache blocks for prefix caching
request.prefill_block_num = len(request.block_tables)
self.cache_manager.update_cache_blocks(request, self.config.cache_config.block_size)
if (
self.allocated_slots(request) - request.num_total_tokens
<= self.config.cache_config.prealloc_dec_block_slot_num_threshold
):
# Allocation for next decoding blocks
if self.cache_manager.can_allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num):
llm_logger.debug(
f"schedule decoding task: {request} request.num_total_tokens {request.num_total_tokens} request.num_computed_tokens {request.num_computed_tokens}"
)
request.block_tables.extend(
self.cache_manager.allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num)
)
# Prepare decoding task
scheduled_reqs.append(self._prepare_decode_task(request))
else:
# Not enough blocks to allocate, trigger preemption
can_schedule = self._trigger_preempt(
request, self.config.cache_config.enc_dec_block_num, preempted_reqs, scheduled_reqs
)
if not can_schedule:
break
# Allocation for next decoding blocks
request.block_tables.extend(
self.cache_manager.allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num)
)
# Prepare decoding task
scheduled_reqs.append(self._prepare_decode_task(request))
num_decoding_req_nums += 1
token_budget -= 1
else: # need to prefill
llm_logger.debug(
f"scheduler prefill task: {request} request.need_prefill_tokens {request.need_prefill_tokens} request.num_computed_tokens {request.num_computed_tokens}"
)
num_new_tokens = self._get_num_new_tokens(request, token_budget)
num_new_block = self.get_new_block_nums(request, num_new_tokens)
# Allocate blocks to prefill
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
# Prepare prefill task
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
else:
can_schedule = self._trigger_preempt(request, num_new_block, preempted_reqs, scheduled_reqs)
if not can_schedule:
break
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
# Prepare prefill task
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
token_budget -= num_new_tokens
request.num_computed_tokens += num_new_tokens
req_index += 1
# schedule the WAITING requests.
if not preempted_reqs:
while self.waiting and token_budget > 0:
if len(self.running) == self.max_num_seqs:
break
if self.config.enable_mm and self.exist_prefill(scheduled_reqs):
break
request = self.waiting[0]
if request.status == RequestStatus.WAITING:
# Enable prefix caching
if self.config.cache_config.enable_prefix_caching:
success = self.get_prefix_cached_blocks(request)
if not success:
break
num_new_tokens = self._get_num_new_tokens(request, token_budget)
num_new_block = self.get_new_block_nums(request, num_new_tokens)
# Allocate blocks to prefill
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
if not request.get("skip_allocate", False):
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
self.waiting.popleft()
self.running.append(request)
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
request.inference_start_time = time.time()
request.schedule_start_time = time.time()
token_budget -= num_new_tokens
request.num_computed_tokens += num_new_tokens
request.status = RequestStatus.RUNNING
allocated_position = self.get_available_position()
request.idx = allocated_position
self.tasks_list[allocated_position] = request
self.stop_flags[allocated_position] = False
self.req_dict[request.request_id] = allocated_position
else:
break
elif request.status == RequestStatus.PREEMPTED:
request.need_prefill_tokens = (
request.num_total_tokens
) # Before preempted task rescheduled, preempted task has been sent to engine, no more tokens are output, here num_total_tokens should be static and correct
num_new_tokens = self._get_num_new_tokens(request, token_budget)
num_new_block = self.get_new_block_nums(request, num_new_tokens)
# Allocate blocks to prefill
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
self.waiting.popleft()
self.running.append(request)
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
token_budget -= num_new_tokens
request.num_computed_tokens += num_new_tokens
request.status = RequestStatus.RUNNING
else:
break
else:
llm_logger.error("Unknown request status type")
if scheduled_reqs:
llm_logger.debug(f"schedued_reqs: {scheduled_reqs}")
return scheduled_reqs
def get_available_position(self) -> int:
position = 0
while position < self.max_num_seqs:
if self.stop_flags[position] is True:
return position
position += 1
raise RuntimeError("No available position is available for new request")
def get_real_bsz(self) -> int:
for i in range(self.max_num_seqs - 1, -1, -1):
if not self.stop_flags[i]:
self.real_bsz = i + 1
break
return self.real_bsz
def get_prefix_cached_blocks(self, request: Request):
"""
set prefix cached information for the given request
"""
try:
cache_prepare_time = time.time()
(common_block_ids, matched_token_num, hit_info) = self.cache_manager.request_match_blocks(
request, self.config.cache_config.block_size
)
matched_block_num = len(common_block_ids)
no_cache_block_num = self.cache_manager.get_required_block_num(
request.prompt_token_ids_len - matched_token_num,
self.config.cache_config.block_size,
)
request.num_cached_tokens = matched_token_num
request.gpu_cache_token_num = hit_info["gpu_cache_blocks"] * self.config.cache_config.block_size
request.cpu_cache_token_num = hit_info["cpu_cache_blocks"] * self.config.cache_config.block_size
request.cache_info = (matched_block_num, no_cache_block_num)
request.block_tables = common_block_ids
request.skip_allocate = False
if matched_token_num == request.prompt_token_ids_len:
request.num_computed_tokens = matched_token_num - 1
request.skip_allocate = True
else:
request.num_computed_tokens = matched_token_num
request.cache_prepare_time = time.time() - cache_prepare_time
return True
except Exception as e:
llm_logger.error(f"prefix match blocks error: {e}, waiting reschedule...")
return False
def add_request(self, request: Request) -> None:
with self.lock:
self.waiting.append(request)
self.requests[request.request_id] = request
def _free_blocks(self, request: Request):
if self.config.cache_config.enable_prefix_caching:
# TODO(chengyanfu): support cache ouput blocks for prefix caching
self.cache_manager.release_block_ids_async(request)
self.cache_manager.recycle_gpu_blocks(request.block_tables[request.prefill_block_num :])
else:
self.cache_manager.recycle_gpu_blocks(request.block_tables)
request.block_tables = []
def finish_requests_async(self, request_ids: Union[str, Iterable[str]]):
return self.finish_execution_pool.submit(self.finish_requests, request_ids)
def finish_requests(self, request_ids: Union[str, Iterable[str]]):
llm_logger.info(f"recycle resources for requests: {request_ids}")
try:
with self.lock:
if isinstance(request_ids, str):
request_ids = (request_ids,)
else:
request_ids = set(request_ids)
for req_id in request_ids:
request = self.requests.get(req_id)
if request is None:
# Invalid request ID.
continue
if request in self.running: # normally run and finished
self.running.remove(request)
request.status = RequestStatus.FINISHED
self._free_blocks(request)
if (
request.request_id in self.to_be_rescheduled_request_id_set
): # finished after preempted, blocks have been recycled.
self.to_be_rescheduled_request_id_set.remove(
request.request_id
) # just remove from to_be_rescheduled_request_id_set
if (
request in self.waiting
): # after finished, this request still scheduled from preempted to waiting, unexpected error, should not be here
raise RuntimeError(f"request {request.request_id} scheduled into waiting list, after finished")
self.tasks_list[request.idx] = None
self.stop_flags[request.idx] = True
del self.requests[req_id]
except Exception as e:
llm_logger.error(e)