Files
FastDeploy/fastdeploy/vision/visualize/classification.cc
Jason df20b2a02b [Other] Remove useless macros (#1095)
* Remove useless macros

* triger ci

* fix check error

* rename INTEGRATE_PADDLE2ONNX to ENABLE_PADDLE2ONNX
2023-01-09 21:35:23 +08:00

97 lines
3.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include "fastdeploy/vision/visualize/visualize.h"
#include "opencv2/imgproc/imgproc.hpp"
namespace fastdeploy {
namespace vision {
cv::Mat VisClassification(const cv::Mat& im, const ClassifyResult& result,
int top_k, float score_threshold, float font_size) {
int h = im.rows;
int w = im.cols;
auto vis_im = im.clone();
int h_sep = h / 30;
int w_sep = w / 10;
if (top_k > result.scores.size()) {
top_k = result.scores.size();
}
for (int i = 0; i < top_k; ++i) {
if (result.scores[i] < score_threshold) {
continue;
}
std::string id = std::to_string(result.label_ids[i]);
std::string score = std::to_string(result.scores[i]);
if (score.size() > 4) {
score = score.substr(0, 4);
}
std::string text = id + "," + score;
int font = cv::FONT_HERSHEY_SIMPLEX;
cv::Point origin;
origin.x = w_sep;
origin.y = h_sep * (i + 1);
cv::putText(vis_im, text, origin, font, font_size,
cv::Scalar(255, 255, 255), 1);
}
return vis_im;
}
// Visualize ClassifyResult with custom labels.
cv::Mat VisClassification(const cv::Mat& im, const ClassifyResult& result,
const std::vector<std::string>& labels, int top_k,
float score_threshold, float font_size) {
int h = im.rows;
int w = im.cols;
auto vis_im = im.clone();
int h_sep = h / 30;
int w_sep = w / 10;
if (top_k > result.scores.size()) {
top_k = result.scores.size();
}
for (int i = 0; i < top_k; ++i) {
if (result.scores[i] < score_threshold) {
continue;
}
std::string id = std::to_string(result.label_ids[i]);
std::string score = std::to_string(result.scores[i]);
if (score.size() > 4) {
score = score.substr(0, 4);
}
std::string text = id + "," + score;
if (labels.size() > result.label_ids[i]) {
text = labels[result.label_ids[i]] + "," + text;
} else {
FDWARNING << "The label_id: " << result.label_ids[i]
<< " in DetectionResult should be less than length of labels:"
<< labels.size() << "." << std::endl;
}
if (text.size() > 16) {
text = text.substr(0, 16);
}
int font = cv::FONT_HERSHEY_SIMPLEX;
cv::Point origin;
origin.x = w_sep;
origin.y = h_sep * (i + 1);
cv::putText(vis_im, text, origin, font, font_size,
cv::Scalar(255, 255, 255), 1);
}
return vis_im;
}
} // namespace vision
} // namespace fastdeploy