Files
FastDeploy/fastdeploy/model_executor/model_loader.py
2025-06-29 23:29:37 +00:00

96 lines
3.2 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from abc import ABC, abstractmethod
import paddle
from paddle import nn
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
from fastdeploy.model_executor.models.ernie4_5_moe import \
Ernie4_5_PretrainedModel
from fastdeploy.model_executor.models.ernie4_5_mtp import \
Ernie4_5_MTPPretrainedModel
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.model_executor.models.qwen2 import Qwen2PretrainedModel
from fastdeploy.model_executor.models.qwen3 import Qwen3PretrainedModel
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoePretrainedModel
from fastdeploy.model_executor.models.utils import load_checkpoint
MODEL_CLASSES = {
"Ernie4_5_MoeForCausalLM": Ernie4_5_PretrainedModel,
"Ernie4_5_MTPForCausalLM": Ernie4_5_MTPPretrainedModel,
"Qwen2ForCausalLM": Qwen2PretrainedModel,
"Qwen3ForCausalLM": Qwen3PretrainedModel,
"Qwen3MoeForCausalLM": Qwen3MoePretrainedModel,
"Ernie4_5_ForCausalLM": Ernie4_5_PretrainedModel
}
def get_model_from_loader(fd_config: FDConfig) -> nn.Layer:
""" load or download model """
model_loader = DefaultModelLoader(fd_config.load_config)
model = model_loader.load_model(fd_config)
return model
class BaseModelLoader(ABC):
""" Base class for model loaders. """
def __init__(self, load_config: LoadConfig):
self.load_config = load_config
@abstractmethod
def download_model(self, load_config: ModelConfig) -> None:
""" Download a model so that it can be immediately loaded."""
raise NotImplementedError
@abstractmethod
def load_model(self, fd_config: FDConfig) -> nn.Layer:
""" Load a model with the given configurations."""
raise NotImplementedError
class DefaultModelLoader(BaseModelLoader):
""" ModelLoader that can load registered models """
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
def download_model(self, model_config: ModelConfig) -> None:
pass
def load_model(self, fd_config: FDConfig) -> nn.Layer:
context = paddle.LazyGuard()
architectures = fd_config.model_config.architectures[0]
# TODO(gongshaotian): Now, only support safetensor
model_class = MODEL_CLASSES[architectures]
state_dict = load_checkpoint(
fd_config.parallel_config.model_name_or_path,
model_class,
fd_config.model_config,
return_numpy=True)
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
model.eval()
model.set_state_dict(state_dict)
return model