mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
202 lines
7.9 KiB
Python
202 lines
7.9 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import io
|
|
import os
|
|
import random
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from .utils.io_utils import EXTRACTED_FRAME_DIR, get_downloadable, get_filename
|
|
from .utils.video_utils import VideoReaderWrapper
|
|
from fastdeploy.utils import data_processor_logger
|
|
|
|
|
|
def read_video_decord(video_path, save_to_disk):
|
|
"""get reader and meta by decord"""
|
|
data_in_mem = False
|
|
# video_path = get_downloadable(video_path, save_to_disk=save_to_disk)
|
|
if isinstance(video_path, VideoReaderWrapper):
|
|
data_in_mem = True
|
|
video_reader = video_path
|
|
else:
|
|
if isinstance(video_path, bytes):
|
|
video_path = io.BytesIO(video_path)
|
|
video_reader = VideoReaderWrapper(video_path, num_threads=1)
|
|
vlen = len(video_reader)
|
|
fps = video_reader.get_avg_fps()
|
|
duration = vlen / float(fps)
|
|
|
|
video_meta = {"fps": fps, "duration": duration, "num_of_frame": vlen}
|
|
|
|
return video_reader, video_meta, video_path
|
|
|
|
|
|
def get_frame_indices(
|
|
vlen,
|
|
target_frames=-1,
|
|
target_fps=-1,
|
|
frames_sample="middle",
|
|
fix_start=None,
|
|
input_fps=-1,
|
|
):
|
|
"""
|
|
取出对应的frame index
|
|
"""
|
|
assert frames_sample in ["rand", "middle", "leading"]
|
|
if target_frames > 0:
|
|
assert target_fps <= 0, "target_fps must be negative if target_frames is given."
|
|
if target_frames > vlen:
|
|
acc_samples = vlen
|
|
data_processor_logger.info(
|
|
f"target_frames={target_frames} is larger than video length {vlen}, "
|
|
f"will sample {acc_samples} frames."
|
|
)
|
|
else:
|
|
acc_samples = target_frames
|
|
data_processor_logger.debug(f"sampling at target_frames={target_frames}, frames_sample={frames_sample}")
|
|
|
|
# split the video into `acc_samples` intervals, and sample from each interval.
|
|
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
|
|
ranges = []
|
|
for idx, interv in enumerate(intervals[:-1]):
|
|
ranges.append((interv, intervals[idx + 1] - 1))
|
|
if frames_sample == "rand":
|
|
try:
|
|
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
|
|
except Exception as e:
|
|
frame_indices = np.random.permutation(vlen)[:acc_samples]
|
|
frame_indices.sort()
|
|
frame_indices = list(frame_indices)
|
|
elif fix_start is not None:
|
|
frame_indices = [x[0] + fix_start for x in ranges]
|
|
elif frames_sample == "leading":
|
|
frame_indices = [x[0] for x in ranges]
|
|
elif frames_sample == "middle":
|
|
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
elif target_fps > 0:
|
|
assert target_frames <= 0, "target_frames must be negative if target_fps is given."
|
|
assert input_fps > 0, "input_fps must be provided if target_fps is given."
|
|
data_processor_logger.info(f"sampling at fps={target_fps}, frames_sample={frames_sample}")
|
|
duration = float(vlen) / input_fps
|
|
delta = 1 / target_fps # gap between frames, this is also the clip length each frame represents
|
|
if frames_sample == "middle":
|
|
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
|
elif frames_sample == "leading":
|
|
frame_seconds = np.arange(0, duration, delta)
|
|
if frames_sample == "rand":
|
|
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
|
rand_offset = np.random.rand(*(frame_seconds.shape)) - 0.5
|
|
frame_seconds += rand_offset * delta
|
|
frame_indices = np.around(frame_seconds * input_fps).astype(int)
|
|
frame_indices = [e for e in frame_indices if e < vlen]
|
|
|
|
else:
|
|
raise ValueError("Must provide either positive target_fps or positive target_frames.")
|
|
|
|
return frame_indices
|
|
|
|
|
|
def read_frames_decord(
|
|
video_path,
|
|
video_reader,
|
|
video_meta,
|
|
target_frames=-1,
|
|
target_fps=-1,
|
|
frames_sample="middle",
|
|
fix_start=None,
|
|
save_to_disk=False,
|
|
cache_dir=EXTRACTED_FRAME_DIR,
|
|
frame_indices=None,
|
|
tol=10,
|
|
):
|
|
"""get frames by decord"""
|
|
|
|
if frame_indices is None:
|
|
frame_indices = get_frame_indices(
|
|
video_meta["num_of_frame"],
|
|
target_frames=target_frames,
|
|
target_fps=target_fps,
|
|
frames_sample=frames_sample,
|
|
fix_start=fix_start,
|
|
input_fps=video_meta["fps"],
|
|
)
|
|
|
|
frames = []
|
|
for frame_indice_index in range(0, len(frame_indices)):
|
|
frame_indice = frame_indices[frame_indice_index]
|
|
try:
|
|
frames.append(video_reader[frame_indice].asnumpy()) # (T, H, W, C)
|
|
except Exception as e:
|
|
data_processor_logger.debug(f"encounter error when get frame: {frame_indice}, error: {e}")
|
|
previous_counter = 1
|
|
later_counter = 1
|
|
previous_after_flag = True
|
|
if frame_indice == 0 or frame_indice == len(video_reader) - 1:
|
|
cur_tol = tol * 2
|
|
else:
|
|
cur_tol = tol
|
|
while previous_counter < cur_tol or later_counter < cur_tol:
|
|
if previous_after_flag:
|
|
if frame_indice - previous_counter < 0:
|
|
previous_counter += 1
|
|
previous_after_flag = not previous_after_flag
|
|
continue
|
|
try:
|
|
frames.append(video_reader[frame_indice - previous_counter].asnumpy())
|
|
data_processor_logger.info(f"replace {frame_indice}-th frame with {frame_indice-previous_counter}-th frame")
|
|
frame_indices[frame_indice_index] = frame_indice - previous_counter
|
|
break
|
|
except Exception as e:
|
|
previous_counter += 1
|
|
else:
|
|
if frame_indice + later_counter >= len(video_reader):
|
|
later_counter += 1
|
|
previous_after_flag = not previous_after_flag
|
|
continue
|
|
try:
|
|
frames.append(video_reader[frame_indice + later_counter].asnumpy())
|
|
data_processor_logger.info(f"replace {frame_indice}-th frame with {frame_indice+later_counter}-th frame")
|
|
frame_indices[frame_indice_index] = frame_indice + later_counter
|
|
break
|
|
except Exception as e:
|
|
later_counter += 1
|
|
previous_after_flag = not previous_after_flag
|
|
|
|
frames = np.stack(frames, axis=0)
|
|
assert len(frames) == len(frame_indices), f"len(frames): {len(frames)} != len(frame_indices): {len(frame_indices)}"
|
|
|
|
ret = []
|
|
|
|
url_sha1 = get_filename()
|
|
for idx, frame in enumerate(frames):
|
|
tmp = Image.fromarray(frame, "RGB")
|
|
if save_to_disk:
|
|
save_path = os.path.join(cache_dir, f"{url_sha1}", f"{idx}.png")
|
|
if not os.path.exists(os.path.dirname(save_path)):
|
|
os.makedirs(os.path.dirname(save_path))
|
|
tmp.save(save_path)
|
|
tmp = save_path
|
|
ret.append(tmp)
|
|
|
|
time_stamps = [frame_idx * video_meta["duration"] / video_meta["num_of_frame"] for frame_idx in frame_indices]
|
|
|
|
return ret, frame_indices, time_stamps
|