Files
FastDeploy/fastdeploy/function/concat.cc
Jack Zhou de98163efa [Functions] Add +-*/ operators and reshape for FDTensor (#655)
* Add +-*/ functions

* Add same dims test case for operations

* add broadcast 0

* Add broadcast dim2 testcase

* Add broadcast dim3 and dim4 testcase

* Add +-*/ operators

* Add mixed operation

* refresh code style

* Add reshape op

* update code style
2022-11-23 11:34:02 +08:00

117 lines
3.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/concat.h"
#include "fastdeploy/utils/utils.h"
#include <cstring>
#include <limits>
#include <set>
#include <sstream>
namespace fastdeploy {
namespace function {
std::vector<int64_t>
ComputeAndCheckConcatOutputShape(const std::vector<FDTensor>& input, int axis) {
const size_t n = input.size();
auto out_dims = input[0].shape;
size_t in_zero_dims_size = out_dims.size();
for (size_t i = 1; i < n; ++i) {
FDASSERT(input[i].shape.size() == out_dims.size(),
"The shape of input[0] and input[%d] is expected to be equal. But "
"received input[0]'s shape = %s, input[%d]'s shape = %s.",
i, Str(out_dims).c_str(), i, Str(input[i].shape).c_str());
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
out_dims[axis] += input[i].shape[axis];
} else {
FDASSERT(
input[0].shape[j] == input[i].shape[j],
"The %d-th dimension of input[0] and input[%d] is expected to be "
"equal."
"But received input[0]'s shape = %s, input[%d]'s shape = %s.",
j, i, Str(input[0].shape).c_str(), i, Str(input[i].shape).c_str());
}
}
}
return out_dims;
}
template <typename T> struct ConcatFunctor {
void operator()(const std::vector<FDTensor>& input, int axis,
FDTensor* output) {
size_t num = input.size();
int64_t rows = 1;
auto dim_0 = input[0].shape;
for (int i = 0; i < axis; ++i) {
rows *= dim_0[i];
}
int64_t out_rows = rows, out_cols = 0;
std::vector<int64_t> input_cols(num);
for (size_t i = 0; i < num; ++i) {
int64_t t_cols = input[i].Numel() / rows;
out_cols += t_cols;
input_cols[i] = t_cols;
}
// computation
T* output_data = reinterpret_cast<T*>(output->Data());
int64_t col_idx = 0;
for (size_t j = 0; j < num; ++j) {
int64_t col_len = input_cols[j];
const T* input_data = reinterpret_cast<const T*>(input[j].Data());
for (int64_t k = 0; k < out_rows; ++k) {
FDTensor::CopyBuffer(output_data + k * out_cols + col_idx,
input_data + k * col_len, sizeof(T) * col_len,
input[j].device, input[j].is_pinned_memory);
}
col_idx += col_len;
}
}
};
template <typename T>
void ConcatKernel(const std::vector<FDTensor>& input, FDTensor* output,
int axis) {
auto output_shape = ComputeAndCheckConcatOutputShape(input, axis);
output->Resize(output_shape, TypeToDataType<T>::dtype, output->name,
input[0].device);
ConcatFunctor<T> functor;
functor(input, axis, output);
}
void Concat(const std::vector<FDTensor>& x, FDTensor* out, int axis) {
FDASSERT(x.size() > 0,
"The number of FDTensor array should be larger than 0, but the size "
"of input is %d",
x.size());
int64_t rank = x[0].shape.size();
FDASSERT(axis >= -rank && axis < rank,
"The axis is expected to be in range of [%d, %d), but got %d", -rank,
rank, axis);
if (axis < 0) {
axis += rank;
}
FD_VISIT_ALL_TYPES(x[0].dtype, "Concat",
([&] { ConcatKernel<data_t>(x, out, axis); }));
}
} // namespace function
} // namespace fastdeploy