Files
FastDeploy/fastdeploy/worker/experts_manager.py
xiaoxiaohehe001 2970b00dfa
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
[Feature] Support_eplb (#2997)
* [Feature] support_eplb

* [Feature] support_eplb

* [Fix] fix mm ep
2025-07-24 20:22:45 +08:00

188 lines
6.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""redundant expert manger."""
from typing import Optional, Tuple
import numpy as np
import paddle
from paddleformers.utils.log import logger
from .eplb import rebalance_experts
class RedundantExpertManger:
"""
RedundantExpertManger
"""
def __init__(
self,
n_routed_experts: int,
num_hidden_layers: int,
redundant_experts_num: int,
ep_size: int,
) -> None:
"""Initialize a redundant expert manager"""
self.num_expert = n_routed_experts if isinstance(n_routed_experts, int) else n_routed_experts[0]
self.redundant_experts_num = redundant_experts_num
self.num_hidden_layers = num_hidden_layers
self.num_replicas = self.num_expert + self.redundant_experts_num
self.num_nodes = max(ep_size // 8, 1)
self.num_gpus = ep_size
self.num_groups = 1
self.export_per_rank = self.num_replicas // ep_size
assert (
self.num_replicas % ep_size == 0
), f"num_replicas must be divisible by ep_size, \
but got num_replicas = {self.num_replicas}, ep_size = {ep_size}"
self.model_ep_rank_to_expert_id_list = paddle.full(
shape=[
self.num_hidden_layers,
self.num_expert + self.redundant_experts_num,
],
fill_value=-1,
dtype="int32",
)
self.model_expert_id_to_ep_rank_array = paddle.full(
shape=[
self.num_hidden_layers,
self.num_expert,
self.redundant_experts_num + 1,
],
fill_value=-1,
dtype="int32",
)
self.model_expert_in_rank_num_list = paddle.full(
shape=[self.num_hidden_layers, self.num_expert],
fill_value=0,
dtype="int32",
)
# self.model_ep_rank_to_expert_id_list = paddle.arange(
# self.num_expert + self.redundant_experts_num,
# dtype="int32").tile([self.num_hidden_layers, 1])
# self.model_expert_id_to_ep_rank_array = paddle.arange(
# self.num_expert,
# dtype="int32").reshape([self.num_expert, 1]).tile([self.num_hidden_layers, 1, 1])
# self.model_expert_in_rank_num_list = paddle.full(
# shape=[self.num_hidden_layers, self.num_expert],
# fill_value=1,
# dtype="int32")
self.model_tokens_per_expert_stats_list = paddle.ones(
shape=[self.num_hidden_layers, self.num_expert], dtype="int32"
)
rank_expert_list, logical_to_physical_map, expert_count = rebalance_experts(
self.model_tokens_per_expert_stats_list.cpu().numpy(),
self.num_replicas,
self.num_groups,
self.num_nodes,
self.num_gpus,
)
self.update_expert_rank_table(rank_expert_list, logical_to_physical_map, expert_count, False)
logger.info(
f"moe experts table manager init successfully, ep_size {ep_size} \
num_replicas {self.num_replicas} export_per_rank {self.export_per_rank}"
)
def get_ep_rank_to_expert_id_list_by_layer(
self, layer_id: int
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""
get_ep_rank_to_expert_id_list_by_layer
"""
return (
self.model_ep_rank_to_expert_id_list[layer_id],
self.model_expert_id_to_ep_rank_array[layer_id],
self.model_expert_in_rank_num_list[layer_id],
self.model_tokens_per_expert_stats_list[layer_id],
)
def get_ep_rank_to_expert_id_list(
self, layer_id: int
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""
get_ep_rank_to_expert_id_list
"""
return (
self.model_ep_rank_to_expert_id_list[layer_id],
self.model_expert_id_to_ep_rank_array[layer_id],
self.model_expert_in_rank_num_list[layer_id],
self.model_tokens_per_expert_stats_list[layer_id],
)
def get_expert_tokens_stats(
self, verbose: bool = False, clear_stat: bool = False
) -> Tuple[np.ndarray, Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]:
"""
get_per_expert_tokens_stats
"""
try:
if verbose:
return (
self.model_tokens_per_expert_stats_list.cpu().numpy(),
self.model_expert_id_to_ep_rank_array.cpu().numpy(),
self.model_ep_rank_to_expert_id_list.cpu().numpy(),
self.model_expert_in_rank_num_list.cpu().numpy(),
)
return (
self.model_tokens_per_expert_stats_list.cpu().numpy(),
None,
None,
None,
)
finally:
if clear_stat:
self.model_tokens_per_expert_stats_list.zero_()
def get_expert_id_to_ep_rank_array(self) -> np.ndarray:
"""
get_expert_id_to_ep_rank_array
"""
return self.model_expert_id_to_ep_rank_array.cpu().numpy()
def update_expert_rank_table(
self,
rank_expert_list: np.ndarray,
logical_to_physical_map: np.ndarray,
expert_count: np.ndarray,
clear_stat: bool = True,
) -> None:
"""
update_expert_rank_table
"""
# update model info
self.model_ep_rank_to_expert_id_list.copy_(paddle.to_tensor(rank_expert_list), True)
self.model_expert_id_to_ep_rank_array.fill_(-1)
self.model_expert_id_to_ep_rank_array[:, :, : logical_to_physical_map.shape[-1]] = paddle.to_tensor(
logical_to_physical_map
)
self.model_expert_in_rank_num_list.copy_(paddle.to_tensor(expert_count), True)
# reset
if clear_stat:
self.model_tokens_per_expert_stats_list.zero_()
if __name__ == "__main__":
print(RedundantExpertManger(64, 2, 8, 8).model_expert_id_to_ep_rank_array)