Files
FastDeploy/fastdeploy/worker/eplb.py
2025-07-19 23:19:27 +08:00

223 lines
8.2 KiB
Python

"""
This file is copied from https://github.com/deepseek-ai/EPLB/blob/main/eplb.py
"""
"""Expert Parallelism Load Balancer (EPLB)"""
from typing import Tuple
import numpy as np
def balanced_packing(weight: np.ndarray, num_packs: int) -> Tuple[np.ndarray, np.ndarray]:
"""
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs
are as balanced as possible.
Parameters:
weight: [X, n], the weight of each item
num_packs: number of packs
Returns:
pack_index: [X, n], the pack index of each item
rank_in_pack: [X, n], the rank of the item in the pack
"""
num_layers, num_groups = weight.shape
assert num_groups % num_packs == 0
groups_per_pack = num_groups // num_packs
if groups_per_pack == 1:
pack_index = np.arange(weight.shape[-1], dtype=np.int32).reshape(1, -1).repeat(num_layers, axis=0)
rank_in_pack = np.zeros_like(weight, dtype=np.int32)
return pack_index, rank_in_pack
indices = np.argsort(-weight.astype(np.float32), axis=-1)
pack_index = np.full_like(weight, fill_value=-1, dtype=np.int32)
rank_in_pack = np.full_like(pack_index, fill_value=-1)
for i in range(num_layers):
pack_weights = [0] * num_packs
pack_items = [0] * num_packs
for group in indices[i]:
pack = min(
(i for i in range(num_packs) if pack_items[i] < groups_per_pack),
key=pack_weights.__getitem__,
)
assert pack_items[pack] < groups_per_pack
pack_index[i, group] = pack
rank_in_pack[i, group] = pack_items[pack]
pack_weights[pack] += weight[i, group]
pack_items[pack] += 1
return pack_index, rank_in_pack
def replicate_experts(weight: np.ndarray, num_phy: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Replicate `num_log` experts to `num_phy` replicas, such that the maximum load of all replicas is minimized.
Parameters:
weight: [X, num_log]
num_phy: total number of experts after replication
Returns:
phy2log: [X, num_phy], logical expert id of each physical expert
rank: [X, num_phy], the replica rank
logcnt: [X, num_log], number of replicas for each logical expert
"""
n, num_log = weight.shape
num_redundant = num_phy - num_log
assert num_redundant >= 0
phy2log = np.arange(num_phy, dtype=np.int32).reshape(1, -1).repeat(n, axis=0)
rank = np.zeros((n, num_phy), dtype=np.int32)
logcnt = np.ones((n, num_log), dtype=np.int32)
arangen = np.arange(n, dtype=np.int32)
for i in range(num_log, num_phy):
redundant_indices = np.argmax(weight / logcnt, axis=-1)
phy2log[:, i] = redundant_indices
rank[:, i] = logcnt[arangen, redundant_indices]
logcnt[arangen, redundant_indices] += 1
return phy2log, rank, logcnt
def rebalance_experts_hierarchical(
weight: np.ndarray,
num_physical_experts: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Parameters:
weight: [num_moe_layers, num_logical_experts]
num_physical_experts: number of physical experts after replication
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [num_moe_layers, num_physical_experts]
logical_to_physical_map: [num_moe_layers, num_logical_experts, X]
logical_count: [num_moe_layers, num_logical_experts]
"""
num_layers, num_logical_experts = weight.shape
assert num_logical_experts % num_groups == 0
group_size = num_logical_experts // num_groups
assert num_groups % num_nodes == 0
groups_per_node = num_groups // num_nodes
assert num_gpus % num_nodes == 0
assert num_physical_experts % num_gpus == 0
phy_experts_per_gpu = num_physical_experts // num_gpus
def inverse(perm: np.ndarray) -> np.ndarray:
inv = np.empty_like(perm)
inv[np.arange(perm.shape[0])[:, None], perm] = np.arange(perm.shape[1], dtype=np.int32).reshape(1, -1)
return inv
# Step 1: pack groups to nodes
tokens_per_group = weight.reshape(num_layers, num_groups, group_size).sum(axis=-1)
group_pack_index, group_rank_in_pack = balanced_packing(tokens_per_group, num_nodes)
log2mlog = (
((group_pack_index * groups_per_node + group_rank_in_pack) * group_size)[:, :, None]
+ np.arange(group_size, dtype=np.int32)
).reshape(num_layers, -1)
mlog2log = inverse(log2mlog)
# Step 2: construct redundant experts within nodes
tokens_per_mlog = np.take_along_axis(weight, mlog2log, axis=-1).reshape(-1, num_logical_experts // num_nodes)
phy2mlog, phyrank, mlogcnt = replicate_experts(tokens_per_mlog, num_physical_experts // num_nodes)
# Step 3: pack physical_experts to GPUs
tokens_per_phy = np.take_along_axis(tokens_per_mlog / mlogcnt, phy2mlog, axis=-1)
pack_index, rank_in_pack = balanced_packing(tokens_per_phy, num_gpus // num_nodes)
phy2pphy = pack_index * phy_experts_per_gpu + rank_in_pack
pphy2phy = inverse(phy2pphy)
pphy2mlog = np.take_along_axis(phy2mlog, pphy2phy, axis=-1) # [num_layers * num_nodes, num_log_per_nodes]
pphy2mlog = (
pphy2mlog.reshape(num_layers, num_nodes, -1)
+ np.arange(
0,
num_logical_experts,
num_logical_experts // num_nodes,
dtype=np.int32,
).reshape(1, -1, 1)
).reshape(num_layers, -1)
pphy2log = np.take_along_axis(mlog2log, pphy2mlog, axis=-1)
pphyrank = np.take_along_axis(phyrank, pphy2phy, axis=-1).reshape(num_layers, -1)
logcnt = np.take_along_axis(mlogcnt.reshape(num_layers, -1), log2mlog, axis=-1)
return pphy2log, pphyrank, logcnt
def rebalance_experts(
weight: np.ndarray,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Entry point for expert-parallelism load balancer.
Parameters:
weight: [layers, num_logical_experts], the load statistics for all logical experts
num_replicas: number of physical experts, must be a multiple of `num_gpus`
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [layers, num_replicas], the expert index of each replica
logical_to_physical_map: [layers, num_logical_experts, X], the replica indices for each expert
expert_count: [layers, num_logical_experts], number of physical replicas for each logical expert
"""
num_layers, num_logical_experts = weight.shape
weight = weight.astype(np.float32)
if num_groups % num_nodes == 0:
# use hierarchical load-balance policy
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(
weight, num_replicas, num_groups, num_nodes, num_gpus
)
else:
# use global load-balance policy
phy2log, phyrank, logcnt = replicate_experts(weight, num_replicas)
maxlogcnt = logcnt.max()
log2phy = np.full((num_layers, num_logical_experts, maxlogcnt), -1, dtype=np.int32)
np.put_along_axis(
log2phy.reshape(num_layers, -1)[:, :, None],
(phy2log * maxlogcnt + phyrank)[:, :, None],
np.arange(num_replicas, dtype=np.int32).reshape(1, -1).repeat(num_layers, axis=0)[:, :, None],
axis=1,
)
return phy2log, log2phy, logcnt
__all__ = ["rebalance_experts"]
def main():
""" """
num_hidden_layers = 3
num_expert = 64
num_groups = 8
num_replicas = 64
num_nodes = 4
num_gpus = 4 * 8
model_tokens_per_expert_stats_list = np.random.randint(low=1, high=10, size=(num_hidden_layers, num_expert))
phy2log, phyrank, logcnt = rebalance_experts(
model_tokens_per_expert_stats_list,
num_replicas,
num_groups,
num_nodes,
num_gpus,
)
print(phy2log)
print(phyrank)
print(logcnt)
if __name__ == "__main__":
main()