mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-01 06:42:23 +08:00
82 lines
3.4 KiB
Python
82 lines
3.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.forward_meta import DCUForwardMeta
|
|
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
|
|
|
|
|
|
class DCUModelRunner(GPUModelRunner):
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
device: str, # logic device
|
|
device_id: int, # physical device id
|
|
rank: int,
|
|
local_rank: int,
|
|
):
|
|
super(DCUModelRunner, self).__init__(
|
|
fd_config=fd_config, device=device, device_id=device_id, rank=rank, local_rank=local_rank
|
|
)
|
|
|
|
def initialize_forward_meta(self):
|
|
"""
|
|
Initialize forward meta and attention meta data
|
|
"""
|
|
# Initialize forward meta
|
|
self.forward_meta = DCUForwardMeta(
|
|
input_ids=self.share_inputs["input_ids"],
|
|
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
|
rotary_embs=self.share_inputs["rope_emb"],
|
|
attn_backend=self.attn_backends[0],
|
|
decoder_batch_ids=self.share_inputs["decoder_batch_ids"],
|
|
decoder_tile_ids_per_batch=self.share_inputs["decoder_tile_ids_per_batch"],
|
|
decoder_num_blocks_cpu=self.share_inputs["decoder_num_blocks_cpu"],
|
|
max_len_tensor_cpu=self.share_inputs["max_len_tensor_cpu"],
|
|
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
|
|
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
|
|
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
|
batch_id_per_token=self.share_inputs["batch_id_per_token"],
|
|
cum_offsets=self.share_inputs["cum_offsets"],
|
|
cu_seqlens_q=self.share_inputs["cu_seqlens_q"],
|
|
cu_seqlens_k=self.share_inputs["cu_seqlens_k"],
|
|
block_tables=self.share_inputs["block_tables"],
|
|
caches=self.share_inputs["caches"],
|
|
)
|
|
|
|
# Update Batch type for cuda graph
|
|
only_decode_batch = True
|
|
prefill_exists = None
|
|
# mix ep in single node
|
|
if self.fd_config.parallel_config.use_ep and self.fd_config.parallel_config.splitwise_role == "mixed":
|
|
only_decode_batch_list = []
|
|
prefill_exists = self.exist_prefill()
|
|
paddle.distributed.all_gather_object(only_decode_batch_list, not prefill_exists)
|
|
only_decode_batch = all(only_decode_batch_list)
|
|
self.fd_config.parallel_config.moe_phase.phase = "decode" if only_decode_batch else "prefill"
|
|
|
|
self.forward_meta.step_use_cudagraph = (
|
|
self.use_cudagraph
|
|
and only_decode_batch
|
|
and not (prefill_exists if prefill_exists is not None else self.exist_prefill())
|
|
)
|
|
|
|
# Initialzie attention meta data
|
|
for attn_backend in self.attn_backends:
|
|
attn_backend.init_attention_metadata(self.forward_meta)
|