Files
FastDeploy/fastdeploy/model_executor/graph_optimization/graph_optimization_backend.py
RAM 2fa173e327
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
[Executor] CUDAGraph support RL training (#3265)
* add clear graph opt backend

* cuda graph support rl

* add branch

* 1.fix dynamic_weight_manager bug 2.add clear api for CasualLM

* open test case

* fix typo

* update mkdocs.yaml

* [Docs]Update mkdocs.yml

* update test case

* use unittest in graph test case
2025-08-25 20:59:30 +08:00

151 lines
5.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import functools
import inspect
import types
from typing import Callable, Optional, TypeVar, get_type_hints
from paddle.jit import sot
from paddle.jit.dy2static.utils import Backend as ToStaticBackend
from paddleformers.utils.log import logger
from typing_extensions import ParamSpec
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend import (
CudaGraphPiecewiseBackend,
)
from fastdeploy.model_executor.graph_optimization.dynamic_dims_marker import (
resolve_dynamic_dims,
)
from fastdeploy.model_executor.graph_optimization.utils import in_profile_run_mode
from fastdeploy.model_executor.graph_optimization.utils import (
in_sot_warmup_mode as in_warmup_mode,
)
P = ParamSpec("P")
T = TypeVar("T")
def apply_to_static_optimization(fn: Callable[P, T], backend: ToStaticBackend) -> Callable[P, T]:
forward_fn = fn
forward_sig = inspect.signature(forward_fn)
forward_type_hints = get_type_hints(forward_fn)
static_forward_fn = sot.symbolic_translate(forward_fn, training=False, backend=backend)
unsafe_static_forward_fn = None
need_warmup = True
@functools.wraps(forward_fn)
def warmup_impl(self, *args, **kwargs):
nonlocal unsafe_static_forward_fn, need_warmup
bound_args = forward_sig.bind(self, *args, **kwargs)
bound_args.apply_defaults()
for name, arg in bound_args.arguments.items():
if name not in forward_type_hints:
continue
annotation = forward_type_hints[name]
resolve_dynamic_dims(arg, name, annotation)
result = static_forward_fn(self, *args, **kwargs)
original_code = forward_fn.__code__
(new_guarded_codes, _) = sot.opcode_translator.executor.executor_cache.OpcodeExecutorCache().cache[
original_code
]
# Check has only one graph
if len(new_guarded_codes) > 1:
logger.warning("Model has multiple generated code, please check all dynamic dim has marked.")
unsafe_static_forward_fn = None
need_warmup = False
return result
# Check generated code has no break graph
new_code = new_guarded_codes[0][0][0]
if any(name.startswith("$") for name in new_code.co_names): # TODO(SigureMo): It's a internal impl
logger.warning("Model has breakgraph, please set env SOT_LOG_LEVEL=3 to check it.")
unsafe_static_forward_fn = None
need_warmup = False
return result
unsafe_static_forward_fn = types.FunctionType(
new_code,
forward_fn.__globals__,
forward_fn.__name__,
forward_fn.__defaults__,
forward_fn.__closure__,
)
return result
@functools.wraps(forward_fn)
def static_forward(self, *args, **kwargs):
if in_profile_run_mode():
return forward_fn(self, *args, **kwargs)
nonlocal need_warmup
is_warmup = in_warmup_mode() and need_warmup
if is_warmup:
return warmup_impl(self, *args, **kwargs)
nonlocal unsafe_static_forward_fn
if unsafe_static_forward_fn is None:
return static_forward_fn(self, *args, **kwargs)
return unsafe_static_forward_fn(self, *args, **kwargs)
return static_forward
class GraphOptBackend:
"""
Integrated various graph optimization functions, including dynamic graph to static graph conversion,
CINN compilation optimization, CudaGraph, and so on.
"""
fd_config: FDConfig
cudagraph_piecewise_backend: Optional[CudaGraphPiecewiseBackend] = None
def __init__(self, runnable: Callable, fd_config: FDConfig):
self.runnable = runnable
self.fd_config = fd_config
self.max_captre_batch = fd_config.graph_opt_config.cudagraph_capture_sizes[0]
if self.fd_config.graph_opt_config.graph_opt_level > 0:
# 1. Prepare cuda grpah input buffers (contain output of subgraphs)
# 2. Convert dynamic grpah to static graph
backend = (
ToStaticBackend.CINN if self.fd_config.graph_opt_config.graph_opt_level > 1 else ToStaticBackend.PHI
)
self.runnable = apply_to_static_optimization(
self.runnable.__func__,
backend,
).__get__(self.runnable.__self__)
def __call__(self, **kwargs):
if not self.fd_config.graph_opt_config.use_cudagraph:
return self.runnable(**kwargs)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
fd_config=self.fd_config, runnable=self.runnable
)
assert kwargs["forward_meta"].ids_remove_padding is not None
batch_size = kwargs["forward_meta"].ids_remove_padding.shape[0]
if (not kwargs["forward_meta"].step_use_cudagraph) or (batch_size > self.max_captre_batch):
return self.runnable(**kwargs)
else:
return self.cudagraph_piecewise_backend.__call__(**kwargs)
def clear_cudagraph_piecewise_backend(self):
""" """
self.cudagraph_piecewise_backend.clear_graph()