mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
176 lines
6.4 KiB
C++
176 lines
6.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/segmentation/ppseg/preprocessor.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace segmentation {
|
|
|
|
PaddleSegPreprocessor::PaddleSegPreprocessor(const std::string& config_file) {
|
|
this->config_file_ = config_file;
|
|
FDASSERT(BuildPreprocessPipelineFromConfig(), "Failed to create PaddleSegPreprocessor.");
|
|
initialized_ = true;
|
|
}
|
|
|
|
bool PaddleSegPreprocessor::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (cfg["Deploy"]["transforms"]) {
|
|
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
|
for (const auto& op : preprocess_cfg) {
|
|
FDASSERT(op.IsMap(),
|
|
"Require the transform information in yaml be Map type.");
|
|
if (op["type"].as<std::string>() == "Normalize") {
|
|
if (!disable_normalize_) {
|
|
std::vector<float> mean = {0.5, 0.5, 0.5};
|
|
std::vector<float> std = {0.5, 0.5, 0.5};
|
|
if (op["mean"]) {
|
|
mean = op["mean"].as<std::vector<float>>();
|
|
}
|
|
if (op["std"]) {
|
|
std = op["std"].as<std::vector<float>>();
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
|
}
|
|
} else if (op["type"].as<std::string>() == "Resize") {
|
|
is_contain_resize_op_ = true;
|
|
const auto& target_size = op["target_size"];
|
|
int resize_width = target_size[0].as<int>();
|
|
int resize_height = target_size[1].as<int>();
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(resize_width, resize_height));
|
|
} else {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (cfg["Deploy"]["input_shape"]) {
|
|
auto input_shape = cfg["Deploy"]["input_shape"];
|
|
int input_height = input_shape[2].as<int>();
|
|
int input_width = input_shape[3].as<int>();
|
|
if (input_height != -1 && input_width != -1 && !is_contain_resize_op_) {
|
|
is_contain_resize_op_ = true;
|
|
processors_.insert(processors_.begin(),
|
|
std::make_shared<Resize>(input_width, input_height));
|
|
}
|
|
}
|
|
if (!disable_permute_) {
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
|
|
// Fusion will improve performance
|
|
FuseTransforms(&processors_);
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs, std::map<std::string, std::vector<std::array<int, 2>>>* imgs_info) {
|
|
|
|
if (!initialized_) {
|
|
FDERROR << "The preprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
if (images->size() == 0) {
|
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<std::array<int, 2>> shape_info;
|
|
for (const auto& image : *images) {
|
|
shape_info.push_back({static_cast<int>(image.Height()),
|
|
static_cast<int>(image.Width())});
|
|
}
|
|
(*imgs_info)["shape_info"] = shape_info;
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (processors_[i]->Name() == "Resize") {
|
|
auto processor = dynamic_cast<Resize*>(processors_[i].get());
|
|
int resize_width = -1;
|
|
int resize_height = -1;
|
|
std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
|
|
if (is_vertical_screen_ && (resize_width > resize_height)) {
|
|
if (!(processor->SetWidthAndHeight(resize_height, resize_width))) {
|
|
FDERROR << "Failed to set width and height of "
|
|
<< processors_[i]->Name() << " processor." << std::endl;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
size_t img_num = images->size();
|
|
// Batch preprocess : resize all images to the largest image shape in batch
|
|
if (!is_contain_resize_op_ && img_num > 1) {
|
|
int max_width = 0;
|
|
int max_height = 0;
|
|
for (size_t i = 0; i < img_num; ++i) {
|
|
max_width = std::max(max_width, ((*images)[i]).Width());
|
|
max_height = std::max(max_height, ((*images)[i]).Height());
|
|
}
|
|
for (size_t i = 0; i < img_num; ++i) {
|
|
Resize::Run(&(*images)[i], max_width, max_height);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < img_num; ++i) {
|
|
for (size_t j = 0; j < processors_.size(); ++j) {
|
|
if (!(*(processors_[j].get()))(&((*images)[i]))) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
outputs->resize(1);
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(img_num);
|
|
for (size_t i = 0; i < img_num; ++i) {
|
|
(*images)[i].ShareWithTensor(&(tensors[i]));
|
|
tensors[i].ExpandDim(0);
|
|
}
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void PaddleSegPreprocessor::DisableNormalize() {
|
|
this->disable_normalize_ = true;
|
|
// the DisableNormalize function will be invalid if the configuration file is loaded during preprocessing
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file." << std::endl;
|
|
}
|
|
}
|
|
void PaddleSegPreprocessor::DisablePermute() {
|
|
this->disable_permute_ = true;
|
|
// the DisablePermute function will be invalid if the configuration file is loaded during preprocessing
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file." << std::endl;
|
|
}
|
|
}
|
|
} // namespace segmentation
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|