Files
FastDeploy/fastdeploy/worker/iluvatar_model_runner.py

78 lines
3.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.attention import IluvatarAttnBackend
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
class IluvatarModelRunner(GPUModelRunner):
def __init__(
self,
fd_config: FDConfig,
device: str, # logic device
device_id: int, # physical device id
rank: int,
local_rank: int,
):
# Iluvatar does not support cudagraph
fd_config.graph_opt_config.use_cudagraph = False
super(IluvatarModelRunner, self).__init__(
fd_config=fd_config, device=device, device_id=device_id, rank=rank, local_rank=local_rank
)
assert not self.speculative_decoding, "Iluvatar does not support speculative decoding"
assert self.guided_backend is None, "Iluvatar does not support guided decoding"
assert not envs.ENABLE_V1_KVCACHE_SCHEDULER, "Iluvatar does not support v1 kvcache scheduler"
assert not self.cache_config.enable_prefix_caching, "Iluvatar does not support prefix caching"
self.mla_cache = envs.FD_ATTENTION_BACKEND == "MLA_ATTN"
assert not self.mla_cache, "Iluvatar does not support MLA"
assert not self.use_cudagraph, "Iluvatar does not support cudagraph"
if self.enable_mm:
assert (
not self.cache_config.enable_chunked_prefill
), "Iluvatar does not support chunked prefill for VL model"
# VL neox style = True
if self.enable_mm:
emb_shape = self.share_inputs["rope_emb"].shape
emb_shape[-1] *= 2
self.share_inputs["rope_emb"] = paddle.full(
shape=emb_shape,
fill_value=0,
dtype="float32",
)
def _initialize_attn_backend(self) -> None:
"""
Initialize attention backends
"""
assert len(self.attn_backends) == 0
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
self.model_config.kv_num_heads = max(
1,
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size,
)
attn_backend = IluvatarAttnBackend(
self.fd_config,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=self.model_config.head_dim,
)
self.attn_backends.append(attn_backend)