mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-01 20:32:52 +08:00
78 lines
3.1 KiB
Python
78 lines
3.1 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.attention import IluvatarAttnBackend
|
|
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
|
|
|
|
|
|
class IluvatarModelRunner(GPUModelRunner):
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
device: str, # logic device
|
|
device_id: int, # physical device id
|
|
rank: int,
|
|
local_rank: int,
|
|
):
|
|
# Iluvatar does not support cudagraph
|
|
fd_config.graph_opt_config.use_cudagraph = False
|
|
super(IluvatarModelRunner, self).__init__(
|
|
fd_config=fd_config, device=device, device_id=device_id, rank=rank, local_rank=local_rank
|
|
)
|
|
assert not self.speculative_decoding, "Iluvatar does not support speculative decoding"
|
|
assert self.guided_backend is None, "Iluvatar does not support guided decoding"
|
|
assert not envs.ENABLE_V1_KVCACHE_SCHEDULER, "Iluvatar does not support v1 kvcache scheduler"
|
|
assert not self.cache_config.enable_prefix_caching, "Iluvatar does not support prefix caching"
|
|
self.mla_cache = envs.FD_ATTENTION_BACKEND == "MLA_ATTN"
|
|
assert not self.mla_cache, "Iluvatar does not support MLA"
|
|
assert not self.use_cudagraph, "Iluvatar does not support cudagraph"
|
|
if self.enable_mm:
|
|
assert (
|
|
not self.cache_config.enable_chunked_prefill
|
|
), "Iluvatar does not support chunked prefill for VL model"
|
|
# VL neox style = True
|
|
if self.enable_mm:
|
|
emb_shape = self.share_inputs["rope_emb"].shape
|
|
emb_shape[-1] *= 2
|
|
self.share_inputs["rope_emb"] = paddle.full(
|
|
shape=emb_shape,
|
|
fill_value=0,
|
|
dtype="float32",
|
|
)
|
|
|
|
def _initialize_attn_backend(self) -> None:
|
|
"""
|
|
Initialize attention backends
|
|
"""
|
|
assert len(self.attn_backends) == 0
|
|
|
|
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
|
self.model_config.kv_num_heads = max(
|
|
1,
|
|
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size,
|
|
)
|
|
attn_backend = IluvatarAttnBackend(
|
|
self.fd_config,
|
|
kv_num_heads=self.model_config.kv_num_heads,
|
|
num_heads=num_heads,
|
|
head_dim=self.model_config.head_dim,
|
|
)
|
|
self.attn_backends.append(attn_backend)
|