Files
FastDeploy/fastdeploy/entrypoints/openai/tool_parsers/ernie_x1_tool_parser.py

348 lines
15 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import json
import re
import uuid
from collections.abc import Sequence
from typing import Union
import partial_json_parser
def random_tool_call_id() -> str:
"""Generate a random tool call ID"""
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
from fastdeploy.entrypoints.openai.protocol import (
ChatCompletionRequest,
DeltaFunctionCall,
DeltaMessage,
DeltaToolCall,
ExtractedToolCallInformation,
FunctionCall,
ToolCall,
)
from fastdeploy.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser,
ToolParserManager,
)
from fastdeploy.utils import data_processor_logger
@ToolParserManager.register_module("ernie_x1")
class ErnieX1ToolParser(ToolParser):
"""
Tool parser for Ernie model version 4.5.1.
This parser handles tool calls with newline formats.
"""
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[str] = [] # map what has been streamed for each tool so far to a list
self.buffer: str = "" # buffer for accumulating unprocessed streaming content
self.bracket_counts: dict = {"total_l": 0, "total_r": 0} # track bracket counts in streamed deltas
self.tool_call_start_token: str = "<tool_call>"
self.tool_call_end_token: str = "</tool_call>"
self.tool_call_start_token_id = self.vocab.get(self.tool_call_start_token)
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
if self.tool_call_start_token_id is None or self.tool_call_end_token_id is None:
raise RuntimeError(
"Hermes 2 Pro Tool parser could not locate tool call start/end " "tokens in the tokenizer!"
)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ToolCallParser constructor during construction."
)
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation:
"""
Extract the tool calls from a complete model response.
Supports XML-style formats with newlines:
- XML format: <think>\n...\n</think>\n\n\n<tool_call>\n{...}\n</tool_call>\n...
Handles boundary cases:
1. Only name and partial arguments: {"name": "get_weather", "arguments": {"location": "北京"
2. Only partial name: {"name": "get_we
3. Only name and arguments field without content: {"name": "get_weather", "argume
"""
try:
tool_calls = []
# Check for invalid <response> tags before tool calls
if re.search(r"<response>[\s\S]*?</response>\s*(?=<tool_call>)", model_output):
data_processor_logger.error("Invalid format: <response> tags found before <tool_call>")
return ExtractedToolCallInformation(tools_called=False, content=model_output)
function_call_arr = []
remaining_text = model_output
while True:
# Find the next <tool_call>
tool_call_pos = remaining_text.find("<tool_call>")
if tool_call_pos == -1:
break
# Extract content after <tool_call>
tool_content_start = tool_call_pos + len("<tool_call>")
tool_content_end = remaining_text.find("</tool_call>", tool_content_start)
tool_json = ""
if tool_content_end == -1:
# Processing unclosed tool_call block (truncated case)
tool_json = remaining_text[tool_content_start:].strip()
remaining_text = "" # No more content to process
else:
# Processing closed </tool_call> block
tool_json = remaining_text[tool_content_start:tool_content_end].strip()
remaining_text = remaining_text[tool_content_end + len("</tool_call>") :]
if not tool_json:
continue
# Process tool_json
tool_json = tool_json.strip()
if not tool_json.startswith("{"):
tool_json = "{" + tool_json
if not tool_json.endswith("}"):
tool_json = tool_json + "}"
try:
# Parsing strategy: First try standard json.loads
try:
tool_data = json.loads(tool_json)
if isinstance(tool_data, dict) and "name" in tool_data and "arguments" in tool_data:
function_call_arr.append(
{
"name": tool_data["name"],
"arguments": tool_data["arguments"],
"_is_complete": True, # Mark as complete
}
)
continue
except json.JSONDecodeError:
pass
# Try partial_json_parser when standard parsing fails
from partial_json_parser.core.options import Allow
try:
tool_data = {}
flags = Allow.ALL & ~Allow.STR
# Parse the name field
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', tool_json)
if name_match:
tool_data["name"] = name_match.group(1)
# Parse the arguments field
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', tool_json)
if args_match:
try:
tool_data["arguments"] = partial_json_parser.loads(args_match.group(1), flags=flags)
except:
tool_data["arguments"] = None
if isinstance(tool_data, dict):
function_call_arr.append(
{
"name": tool_data.get("name", ""),
"arguments": tool_data.get("arguments", {}),
"_is_partial": True, # Mark as partial
}
)
except Exception as e:
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
continue
except Exception as e:
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
continue
if not function_call_arr:
data_processor_logger.error("No valid tool calls found")
return ExtractedToolCallInformation(tools_called=False, content=model_output)
tool_calls = []
all_complete = True # Initialize as all complete
for tool_call in function_call_arr:
# Set flags
is_complete = tool_call.get("_is_complete", False)
is_partial = tool_call.get("_is_partial", False)
# If any tool call is incomplete or partial, mark all_complete as False
if not is_complete or is_partial:
all_complete = False
# Process arguments
tool_args = tool_call.get("arguments", {})
if not isinstance(tool_args, dict):
tool_args = {}
try:
args_str = json.dumps(tool_args, ensure_ascii=False) if tool_args else "{}"
except:
args_str = "{}"
tool_calls.append(
ToolCall(
type="function",
id=random_tool_call_id(),
function=FunctionCall(
name=tool_call.get("name", ""),
arguments=args_str,
),
)
)
# Only return tools_called=True if all tool calls are complete
return ExtractedToolCallInformation(
tools_called=all_complete, tool_calls=tool_calls if tool_calls else None, content=""
)
except Exception as e:
data_processor_logger.error(f"Error in extracting tool call from response: {str(e)}")
return ExtractedToolCallInformation(tools_called=False, tool_calls=None, content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: dict,
) -> Union[DeltaMessage, None]:
if self.tool_call_start_token_id not in current_token_ids:
return DeltaMessage(content=delta_text)
# Skip empty chunks
if len(delta_text.strip()) == 0:
return None
try:
delta = None
# Use buffer to accumulate delta_text content
self.buffer += delta_text
# Process the buffer content
if "<tool_call>" in delta_text:
self.current_tool_id = (
max(self.current_tool_id, 0) if self.current_tool_id == -1 else self.current_tool_id + 1
)
self.current_tool_name_sent = False
if len(self.streamed_args_for_tool) <= self.current_tool_id:
self.streamed_args_for_tool.append("")
data_processor_logger.debug(f"New tool call started with ID: {self.current_tool_id}")
# 1. Try to parse the name field
if not self.current_tool_name_sent and '"name"' in self.buffer:
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', self.buffer)
if name_match:
name = name_match.group(1)
if name:
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=random_tool_call_id(),
function=DeltaFunctionCall(name=name).model_dump(exclude_none=True),
)
]
)
# Delete the processed name part from the buffer
self.buffer = self.buffer[name_match.end() :]
self.current_tool_name_sent = True
return delta
# 2. Processing arguments field
if '"arguments"' in self.buffer:
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', self.buffer)
if args_match:
args_content = args_match.group(1)
try:
# Check if arguments field is complete by bracket matching
if "}}" in args_content:
matched_pos = -1
for i, ch in enumerate(delta_text):
if ch == "{":
self.bracket_counts["total_l"] += 1
elif ch == "}":
self.bracket_counts["total_r"] += 1
if self.bracket_counts["total_l"] == self.bracket_counts["total_r"]:
matched_pos = i
break
if matched_pos >= 0:
# Clean up bracket counts for next tool call
truncate_text = delta_text[: matched_pos + 1]
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(arguments=truncate_text).model_dump(
exclude_none=True
),
)
]
)
self.buffer = self.buffer[args_match.end() :]
return delta
else:
# No complete match yet
return None
else:
# Return partial arguments
for ch in delta_text:
if ch == "{":
self.bracket_counts["total_l"] += 1
elif ch == "}":
self.bracket_counts["total_r"] += 1
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(arguments=delta_text).model_dump(exclude_none=True),
)
]
)
return delta
except Exception as e:
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
return None
if "</tool_call>" in self.buffer:
end_pos = self.buffer.find("</tool_call>")
self.buffer = self.buffer[end_pos + len("</tool_call>") :]
self.streamed_args_for_tool.append("")
return delta
except Exception as e:
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
return None