mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
348 lines
15 KiB
Python
348 lines
15 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import json
|
|
import re
|
|
import uuid
|
|
from collections.abc import Sequence
|
|
from typing import Union
|
|
|
|
import partial_json_parser
|
|
|
|
|
|
def random_tool_call_id() -> str:
|
|
"""Generate a random tool call ID"""
|
|
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
|
|
|
|
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
DeltaFunctionCall,
|
|
DeltaMessage,
|
|
DeltaToolCall,
|
|
ExtractedToolCallInformation,
|
|
FunctionCall,
|
|
ToolCall,
|
|
)
|
|
from fastdeploy.entrypoints.openai.tool_parsers.abstract_tool_parser import (
|
|
ToolParser,
|
|
ToolParserManager,
|
|
)
|
|
from fastdeploy.utils import data_processor_logger
|
|
|
|
|
|
@ToolParserManager.register_module("ernie_x1")
|
|
class ErnieX1ToolParser(ToolParser):
|
|
"""
|
|
Tool parser for Ernie model version 4.5.1.
|
|
This parser handles tool calls with newline formats.
|
|
"""
|
|
|
|
def __init__(self, tokenizer):
|
|
super().__init__(tokenizer)
|
|
|
|
self.prev_tool_call_arr: list[dict] = []
|
|
self.current_tool_id: int = -1
|
|
self.current_tool_name_sent: bool = False
|
|
self.streamed_args_for_tool: list[str] = [] # map what has been streamed for each tool so far to a list
|
|
self.buffer: str = "" # buffer for accumulating unprocessed streaming content
|
|
self.bracket_counts: dict = {"total_l": 0, "total_r": 0} # track bracket counts in streamed deltas
|
|
self.tool_call_start_token: str = "<tool_call>"
|
|
self.tool_call_end_token: str = "</tool_call>"
|
|
|
|
self.tool_call_start_token_id = self.vocab.get(self.tool_call_start_token)
|
|
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
|
|
if self.tool_call_start_token_id is None or self.tool_call_end_token_id is None:
|
|
raise RuntimeError(
|
|
"Hermes 2 Pro Tool parser could not locate tool call start/end " "tokens in the tokenizer!"
|
|
)
|
|
|
|
if not self.model_tokenizer:
|
|
raise ValueError(
|
|
"The model tokenizer must be passed to the ToolCallParser constructor during construction."
|
|
)
|
|
|
|
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation:
|
|
"""
|
|
Extract the tool calls from a complete model response.
|
|
Supports XML-style formats with newlines:
|
|
- XML format: <think>\n...\n</think>\n\n\n<tool_call>\n{...}\n</tool_call>\n...
|
|
|
|
Handles boundary cases:
|
|
1. Only name and partial arguments: {"name": "get_weather", "arguments": {"location": "北京"
|
|
2. Only partial name: {"name": "get_we
|
|
3. Only name and arguments field without content: {"name": "get_weather", "argume
|
|
"""
|
|
|
|
try:
|
|
tool_calls = []
|
|
|
|
# Check for invalid <response> tags before tool calls
|
|
if re.search(r"<response>[\s\S]*?</response>\s*(?=<tool_call>)", model_output):
|
|
data_processor_logger.error("Invalid format: <response> tags found before <tool_call>")
|
|
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
|
|
|
function_call_arr = []
|
|
remaining_text = model_output
|
|
|
|
while True:
|
|
# Find the next <tool_call>
|
|
tool_call_pos = remaining_text.find("<tool_call>")
|
|
if tool_call_pos == -1:
|
|
break
|
|
|
|
# Extract content after <tool_call>
|
|
tool_content_start = tool_call_pos + len("<tool_call>")
|
|
tool_content_end = remaining_text.find("</tool_call>", tool_content_start)
|
|
|
|
tool_json = ""
|
|
if tool_content_end == -1:
|
|
# Processing unclosed tool_call block (truncated case)
|
|
tool_json = remaining_text[tool_content_start:].strip()
|
|
remaining_text = "" # No more content to process
|
|
else:
|
|
# Processing closed </tool_call> block
|
|
tool_json = remaining_text[tool_content_start:tool_content_end].strip()
|
|
remaining_text = remaining_text[tool_content_end + len("</tool_call>") :]
|
|
|
|
if not tool_json:
|
|
continue
|
|
|
|
# Process tool_json
|
|
tool_json = tool_json.strip()
|
|
if not tool_json.startswith("{"):
|
|
tool_json = "{" + tool_json
|
|
if not tool_json.endswith("}"):
|
|
tool_json = tool_json + "}"
|
|
|
|
try:
|
|
# Parsing strategy: First try standard json.loads
|
|
try:
|
|
tool_data = json.loads(tool_json)
|
|
|
|
if isinstance(tool_data, dict) and "name" in tool_data and "arguments" in tool_data:
|
|
function_call_arr.append(
|
|
{
|
|
"name": tool_data["name"],
|
|
"arguments": tool_data["arguments"],
|
|
"_is_complete": True, # Mark as complete
|
|
}
|
|
)
|
|
continue
|
|
except json.JSONDecodeError:
|
|
pass
|
|
|
|
# Try partial_json_parser when standard parsing fails
|
|
from partial_json_parser.core.options import Allow
|
|
|
|
try:
|
|
tool_data = {}
|
|
flags = Allow.ALL & ~Allow.STR
|
|
|
|
# Parse the name field
|
|
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', tool_json)
|
|
if name_match:
|
|
tool_data["name"] = name_match.group(1)
|
|
|
|
# Parse the arguments field
|
|
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', tool_json)
|
|
if args_match:
|
|
try:
|
|
tool_data["arguments"] = partial_json_parser.loads(args_match.group(1), flags=flags)
|
|
except:
|
|
tool_data["arguments"] = None
|
|
|
|
if isinstance(tool_data, dict):
|
|
function_call_arr.append(
|
|
{
|
|
"name": tool_data.get("name", ""),
|
|
"arguments": tool_data.get("arguments", {}),
|
|
"_is_partial": True, # Mark as partial
|
|
}
|
|
)
|
|
except Exception as e:
|
|
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
|
continue
|
|
except Exception as e:
|
|
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
|
continue
|
|
|
|
if not function_call_arr:
|
|
data_processor_logger.error("No valid tool calls found")
|
|
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
|
|
|
tool_calls = []
|
|
all_complete = True # Initialize as all complete
|
|
|
|
for tool_call in function_call_arr:
|
|
# Set flags
|
|
is_complete = tool_call.get("_is_complete", False)
|
|
is_partial = tool_call.get("_is_partial", False)
|
|
|
|
# If any tool call is incomplete or partial, mark all_complete as False
|
|
if not is_complete or is_partial:
|
|
all_complete = False
|
|
|
|
# Process arguments
|
|
tool_args = tool_call.get("arguments", {})
|
|
if not isinstance(tool_args, dict):
|
|
tool_args = {}
|
|
|
|
try:
|
|
args_str = json.dumps(tool_args, ensure_ascii=False) if tool_args else "{}"
|
|
except:
|
|
args_str = "{}"
|
|
|
|
tool_calls.append(
|
|
ToolCall(
|
|
type="function",
|
|
id=random_tool_call_id(),
|
|
function=FunctionCall(
|
|
name=tool_call.get("name", ""),
|
|
arguments=args_str,
|
|
),
|
|
)
|
|
)
|
|
|
|
# Only return tools_called=True if all tool calls are complete
|
|
return ExtractedToolCallInformation(
|
|
tools_called=all_complete, tool_calls=tool_calls if tool_calls else None, content=""
|
|
)
|
|
|
|
except Exception as e:
|
|
data_processor_logger.error(f"Error in extracting tool call from response: {str(e)}")
|
|
return ExtractedToolCallInformation(tools_called=False, tool_calls=None, content=model_output)
|
|
|
|
def extract_tool_calls_streaming(
|
|
self,
|
|
previous_text: str,
|
|
current_text: str,
|
|
delta_text: str,
|
|
previous_token_ids: Sequence[int],
|
|
current_token_ids: Sequence[int],
|
|
delta_token_ids: Sequence[int],
|
|
request: dict,
|
|
) -> Union[DeltaMessage, None]:
|
|
|
|
if self.tool_call_start_token_id not in current_token_ids:
|
|
return DeltaMessage(content=delta_text)
|
|
# Skip empty chunks
|
|
if len(delta_text.strip()) == 0:
|
|
return None
|
|
|
|
try:
|
|
delta = None
|
|
# Use buffer to accumulate delta_text content
|
|
self.buffer += delta_text
|
|
|
|
# Process the buffer content
|
|
if "<tool_call>" in delta_text:
|
|
self.current_tool_id = (
|
|
max(self.current_tool_id, 0) if self.current_tool_id == -1 else self.current_tool_id + 1
|
|
)
|
|
self.current_tool_name_sent = False
|
|
if len(self.streamed_args_for_tool) <= self.current_tool_id:
|
|
self.streamed_args_for_tool.append("")
|
|
data_processor_logger.debug(f"New tool call started with ID: {self.current_tool_id}")
|
|
|
|
# 1. Try to parse the name field
|
|
if not self.current_tool_name_sent and '"name"' in self.buffer:
|
|
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', self.buffer)
|
|
if name_match:
|
|
name = name_match.group(1)
|
|
if name:
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
type="function",
|
|
id=random_tool_call_id(),
|
|
function=DeltaFunctionCall(name=name).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
# Delete the processed name part from the buffer
|
|
self.buffer = self.buffer[name_match.end() :]
|
|
self.current_tool_name_sent = True
|
|
return delta
|
|
# 2. Processing arguments field
|
|
if '"arguments"' in self.buffer:
|
|
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', self.buffer)
|
|
if args_match:
|
|
args_content = args_match.group(1)
|
|
try:
|
|
# Check if arguments field is complete by bracket matching
|
|
if "}}" in args_content:
|
|
matched_pos = -1
|
|
for i, ch in enumerate(delta_text):
|
|
if ch == "{":
|
|
self.bracket_counts["total_l"] += 1
|
|
elif ch == "}":
|
|
self.bracket_counts["total_r"] += 1
|
|
|
|
if self.bracket_counts["total_l"] == self.bracket_counts["total_r"]:
|
|
matched_pos = i
|
|
break
|
|
|
|
if matched_pos >= 0:
|
|
# Clean up bracket counts for next tool call
|
|
truncate_text = delta_text[: matched_pos + 1]
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
function=DeltaFunctionCall(arguments=truncate_text).model_dump(
|
|
exclude_none=True
|
|
),
|
|
)
|
|
]
|
|
)
|
|
self.buffer = self.buffer[args_match.end() :]
|
|
return delta
|
|
else:
|
|
# No complete match yet
|
|
return None
|
|
else:
|
|
# Return partial arguments
|
|
for ch in delta_text:
|
|
if ch == "{":
|
|
self.bracket_counts["total_l"] += 1
|
|
elif ch == "}":
|
|
self.bracket_counts["total_r"] += 1
|
|
delta = DeltaMessage(
|
|
tool_calls=[
|
|
DeltaToolCall(
|
|
index=self.current_tool_id,
|
|
function=DeltaFunctionCall(arguments=delta_text).model_dump(exclude_none=True),
|
|
)
|
|
]
|
|
)
|
|
return delta
|
|
except Exception as e:
|
|
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
|
|
return None
|
|
if "</tool_call>" in self.buffer:
|
|
end_pos = self.buffer.find("</tool_call>")
|
|
self.buffer = self.buffer[end_pos + len("</tool_call>") :]
|
|
|
|
self.streamed_args_for_tool.append("")
|
|
|
|
return delta
|
|
|
|
except Exception as e:
|
|
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
|
|
return None
|