mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作 * 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型 * 更新scrfd,拆分disable_normalize和disable_permute * 更新scrfd代码,支持量化 * 更新scrfd python example代码 * 更新模型转换代码,支持量化模型 * 更新文档 * 按照要求修改 * 按照要求修改 * 修正模型转换文档 * 更新一下转换脚本
211 lines
7.5 KiB
Python
211 lines
7.5 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import absolute_import
|
||
import logging
|
||
from .... import FastDeployModel, ModelFormat
|
||
from .... import c_lib_wrap as C
|
||
|
||
|
||
class SCRFD(FastDeployModel):
|
||
def __init__(self,
|
||
model_file,
|
||
params_file="",
|
||
runtime_option=None,
|
||
model_format=ModelFormat.ONNX):
|
||
"""Load a SCRFD model exported by SCRFD.
|
||
|
||
:param model_file: (str)Path of model file, e.g ./scrfd.onnx
|
||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||
"""
|
||
# 调用基函数进行backend_option的初始化
|
||
# 初始化后的option保存在self._runtime_option
|
||
super(SCRFD, self).__init__(runtime_option)
|
||
|
||
self._model = C.vision.facedet.SCRFD(
|
||
model_file, params_file, self._runtime_option, model_format)
|
||
# 通过self.initialized判断整个模型的初始化是否成功
|
||
assert self.initialized, "SCRFD initialize failed."
|
||
|
||
def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3):
|
||
"""Detect the location and key points of human faces from an input image
|
||
|
||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||
:param conf_threshold: confidence threashold for postprocessing, default is 0.7
|
||
:param nms_iou_threshold: iou threashold for NMS, default is 0.3
|
||
:return: FaceDetectionResult
|
||
"""
|
||
return self._model.predict(input_image, conf_threshold,
|
||
nms_iou_threshold)
|
||
|
||
def disable_normalize(self):
|
||
"""
|
||
This function will disable normalize in preprocessing step.
|
||
"""
|
||
self._model.disable_normalize()
|
||
|
||
def disable_permute(self):
|
||
"""
|
||
This function will disable hwc2chw in preprocessing step.
|
||
"""
|
||
self._model.disable_permute()
|
||
|
||
# 一些跟SCRFD模型有关的属性封装
|
||
# 多数是预处理相关,可通过修改如model.size = [640, 640]改变预处理时resize的大小(前提是模型支持)
|
||
@property
|
||
def size(self):
|
||
"""
|
||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
|
||
"""
|
||
return self._model.size
|
||
|
||
@property
|
||
def padding_value(self):
|
||
# padding value, size should be the same as channels
|
||
return self._model.padding_value
|
||
|
||
@property
|
||
def is_no_pad(self):
|
||
# while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
|
||
return self._model.is_no_pad
|
||
|
||
@property
|
||
def is_mini_pad(self):
|
||
# only pad to the minimum rectange which height and width is times of stride
|
||
return self._model.is_mini_pad
|
||
|
||
@property
|
||
def is_scale_up(self):
|
||
# if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
|
||
return self._model.is_scale_up
|
||
|
||
@property
|
||
def stride(self):
|
||
# padding stride, for is_mini_pad
|
||
return self._model.stride
|
||
|
||
@property
|
||
def downsample_strides(self):
|
||
"""
|
||
Argument for image postprocessing step,
|
||
downsample strides (namely, steps) for SCRFD to generate anchors,
|
||
will take (8,16,32) as default values
|
||
"""
|
||
return self._model.downsample_strides
|
||
|
||
@property
|
||
def landmarks_per_face(self):
|
||
"""
|
||
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
|
||
"""
|
||
return self._model.landmarks_per_face
|
||
|
||
@property
|
||
def use_kps(self):
|
||
"""
|
||
Argument for image postprocessing step,
|
||
the outputs of onnx file with key points features or not, default true
|
||
"""
|
||
return self._model.use_kps
|
||
|
||
@property
|
||
def max_nms(self):
|
||
"""
|
||
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
|
||
"""
|
||
return self._model.max_nms
|
||
|
||
@property
|
||
def num_anchors(self):
|
||
"""
|
||
Argument for image postprocessing step, anchor number of each stride, default 2
|
||
"""
|
||
return self._model.num_anchors
|
||
|
||
@size.setter
|
||
def size(self, wh):
|
||
assert isinstance(wh, (list, tuple)),\
|
||
"The value to set `size` must be type of tuple or list."
|
||
assert len(wh) == 2,\
|
||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||
len(wh))
|
||
self._model.size = wh
|
||
|
||
@padding_value.setter
|
||
def padding_value(self, value):
|
||
assert isinstance(
|
||
value,
|
||
list), "The value to set `padding_value` must be type of list."
|
||
self._model.padding_value = value
|
||
|
||
@is_no_pad.setter
|
||
def is_no_pad(self, value):
|
||
assert isinstance(
|
||
value, bool), "The value to set `is_no_pad` must be type of bool."
|
||
self._model.is_no_pad = value
|
||
|
||
@is_mini_pad.setter
|
||
def is_mini_pad(self, value):
|
||
assert isinstance(
|
||
value,
|
||
bool), "The value to set `is_mini_pad` must be type of bool."
|
||
self._model.is_mini_pad = value
|
||
|
||
@is_scale_up.setter
|
||
def is_scale_up(self, value):
|
||
assert isinstance(
|
||
value,
|
||
bool), "The value to set `is_scale_up` must be type of bool."
|
||
self._model.is_scale_up = value
|
||
|
||
@stride.setter
|
||
def stride(self, value):
|
||
assert isinstance(
|
||
value, int), "The value to set `stride` must be type of int."
|
||
self._model.stride = value
|
||
|
||
@downsample_strides.setter
|
||
def downsample_strides(self, value):
|
||
assert isinstance(
|
||
value,
|
||
list), "The value to set `downsample_strides` must be type of list."
|
||
self._model.downsample_strides = value
|
||
|
||
@landmarks_per_face.setter
|
||
def landmarks_per_face(self, value):
|
||
assert isinstance(
|
||
value,
|
||
int), "The value to set `landmarks_per_face` must be type of int."
|
||
self._model.landmarks_per_face = value
|
||
|
||
@use_kps.setter
|
||
def use_kps(self, value):
|
||
assert isinstance(
|
||
value, bool), "The value to set `use_kps` must be type of bool."
|
||
self._model.use_kps = value
|
||
|
||
@max_nms.setter
|
||
def max_nms(self, value):
|
||
assert isinstance(
|
||
value, int), "The value to set `max_nms` must be type of int."
|
||
self._model.max_nms = value
|
||
|
||
@num_anchors.setter
|
||
def num_anchors(self, value):
|
||
assert isinstance(
|
||
value, int), "The value to set `num_anchors` must be type of int."
|
||
self._model.num_anchors = value
|