Files
FastDeploy/python/fastdeploy/vision/facedet/contrib/scrfd.py
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00

211 lines
7.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class SCRFD(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a SCRFD model exported by SCRFD.
:param model_file: (str)Path of model file, e.g ./scrfd.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
# 调用基函数进行backend_option的初始化
# 初始化后的option保存在self._runtime_option
super(SCRFD, self).__init__(runtime_option)
self._model = C.vision.facedet.SCRFD(
model_file, params_file, self._runtime_option, model_format)
# 通过self.initialized判断整个模型的初始化是否成功
assert self.initialized, "SCRFD initialize failed."
def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3):
"""Detect the location and key points of human faces from an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threashold for postprocessing, default is 0.7
:param nms_iou_threshold: iou threashold for NMS, default is 0.3
:return: FaceDetectionResult
"""
return self._model.predict(input_image, conf_threshold,
nms_iou_threshold)
def disable_normalize(self):
"""
This function will disable normalize in preprocessing step.
"""
self._model.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._model.disable_permute()
# 一些跟SCRFD模型有关的属性封装
# 多数是预处理相关可通过修改如model.size = [640, 640]改变预处理时resize的大小前提是模型支持
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
"""
return self._model.size
@property
def padding_value(self):
# padding value, size should be the same as channels
return self._model.padding_value
@property
def is_no_pad(self):
# while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
return self._model.is_no_pad
@property
def is_mini_pad(self):
# only pad to the minimum rectange which height and width is times of stride
return self._model.is_mini_pad
@property
def is_scale_up(self):
# if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
return self._model.is_scale_up
@property
def stride(self):
# padding stride, for is_mini_pad
return self._model.stride
@property
def downsample_strides(self):
"""
Argument for image postprocessing step,
downsample strides (namely, steps) for SCRFD to generate anchors,
will take (8,16,32) as default values
"""
return self._model.downsample_strides
@property
def landmarks_per_face(self):
"""
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
"""
return self._model.landmarks_per_face
@property
def use_kps(self):
"""
Argument for image postprocessing step,
the outputs of onnx file with key points features or not, default true
"""
return self._model.use_kps
@property
def max_nms(self):
"""
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
"""
return self._model.max_nms
@property
def num_anchors(self):
"""
Argument for image postprocessing step, anchor number of each stride, default 2
"""
return self._model.num_anchors
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@padding_value.setter
def padding_value(self, value):
assert isinstance(
value,
list), "The value to set `padding_value` must be type of list."
self._model.padding_value = value
@is_no_pad.setter
def is_no_pad(self, value):
assert isinstance(
value, bool), "The value to set `is_no_pad` must be type of bool."
self._model.is_no_pad = value
@is_mini_pad.setter
def is_mini_pad(self, value):
assert isinstance(
value,
bool), "The value to set `is_mini_pad` must be type of bool."
self._model.is_mini_pad = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._model.is_scale_up = value
@stride.setter
def stride(self, value):
assert isinstance(
value, int), "The value to set `stride` must be type of int."
self._model.stride = value
@downsample_strides.setter
def downsample_strides(self, value):
assert isinstance(
value,
list), "The value to set `downsample_strides` must be type of list."
self._model.downsample_strides = value
@landmarks_per_face.setter
def landmarks_per_face(self, value):
assert isinstance(
value,
int), "The value to set `landmarks_per_face` must be type of int."
self._model.landmarks_per_face = value
@use_kps.setter
def use_kps(self, value):
assert isinstance(
value, bool), "The value to set `use_kps` must be type of bool."
self._model.use_kps = value
@max_nms.setter
def max_nms(self, value):
assert isinstance(
value, int), "The value to set `max_nms` must be type of int."
self._model.max_nms = value
@num_anchors.setter
def num_anchors(self, value):
assert isinstance(
value, int), "The value to set `num_anchors` must be type of int."
self._model.num_anchors = value