mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			58 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fastdeploy as fd
 | ||
| import cv2
 | ||
| import os
 | ||
| 
 | ||
| 
 | ||
| def parse_arguments():
 | ||
|     import argparse
 | ||
|     import ast
 | ||
|     parser = argparse.ArgumentParser()
 | ||
|     parser.add_argument(
 | ||
|         "--model", required=True, help="Path of PaddleSeg model.")
 | ||
|     parser.add_argument(
 | ||
|         "--image", type=str, required=True, help="Path of test image file.")
 | ||
|     parser.add_argument(
 | ||
|         "--device",
 | ||
|         type=str,
 | ||
|         default='cpu',
 | ||
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | ||
|     parser.add_argument(
 | ||
|         "--use_trt",
 | ||
|         type=ast.literal_eval,
 | ||
|         default=False,
 | ||
|         help="Wether to use tensorrt.")
 | ||
|     return parser.parse_args()
 | ||
| 
 | ||
| 
 | ||
| def build_option(args):
 | ||
|     option = fd.RuntimeOption()
 | ||
| 
 | ||
|     if args.device.lower() == "gpu":
 | ||
|         option.use_gpu()
 | ||
| 
 | ||
|     if args.use_trt:
 | ||
|         option.use_trt_backend()
 | ||
|         option.set_trt_input_shape("x", [1, 3, 256, 256], [1, 3, 1024, 1024],
 | ||
|                                    [1, 3, 2048, 2048])
 | ||
|     return option
 | ||
| 
 | ||
| 
 | ||
| args = parse_arguments()
 | ||
| 
 | ||
| # 配置runtime,加载模型
 | ||
| runtime_option = build_option(args)
 | ||
| model_file = os.path.join(args.model, "model.pdmodel")
 | ||
| params_file = os.path.join(args.model, "model.pdiparams")
 | ||
| config_file = os.path.join(args.model, "deploy.yaml")
 | ||
| model = fd.vision.segmentation.PaddleSegModel(
 | ||
|     model_file, params_file, config_file, runtime_option=runtime_option)
 | ||
| 
 | ||
| # 预测图片分割结果
 | ||
| im = cv2.imread(args.image)
 | ||
| result = model.predict(im.copy())
 | ||
| print(result)
 | ||
| 
 | ||
| # 可视化结果
 | ||
| vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
 | ||
| cv2.imwrite("vis_img.png", vis_im)
 | 
