mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	 a51e5a6e55
			
		
	
	a51e5a6e55
	
	
	
		
			
			* [Android] Add Android build docs and demo (#26) * [Backend] Add override flag to lite backend * [Docs] Add Android C++ SDK build docs * [Doc] fix android_build_docs typos * Update CMakeLists.txt * Update android.md * [Doc] Add PicoDet Android demo docs * [Doc] Update PicoDet Andorid demo docs * [Doc] Update PaddleClasModel Android demo docs * [Doc] Update fastdeploy android jni docs * [Doc] Update fastdeploy android jni usage docs * [Android] init fastdeploy android jar package * [Backend] support int8 option for lite backend * [Model] add Backend::Lite to paddle model * [Backend] use CopyFromCpu for lite backend. * [Android] package jni srcs and java api into aar * Update infer.cc * Update infer.cc * [Android] Update package build.gradle * [Android] Update android app examples * [Android] update android detection app
		
			
				
	
	
		
			144 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| #ifdef WIN32
 | |
| const char sep = '\\';
 | |
| #else
 | |
| const char sep = '/';
 | |
| #endif
 | |
| 
 | |
| void CpuInfer(const std::string& model_dir, const std::string& image_file,
 | |
|               const std::string& background_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "deploy.yaml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseCpu();
 | |
|   auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
|   cv::Mat bg = cv::imread(background_file);
 | |
|   fastdeploy::vision::MattingResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   auto vis_im = fastdeploy::vision::VisMatting(im_bak, res);
 | |
|   auto vis_im_with_bg =
 | |
|       fastdeploy::vision::Visualize::SwapBackgroundMatting(im_bak, bg, res);
 | |
|   cv::imwrite("visualized_result.jpg", vis_im_with_bg);
 | |
|   cv::imwrite("visualized_result_fg.jpg", vis_im);
 | |
|   std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
 | |
|                "and ./visualized_result_fg.jpg"
 | |
|             << std::endl;
 | |
| }
 | |
| 
 | |
| void GpuInfer(const std::string& model_dir, const std::string& image_file,
 | |
|               const std::string& background_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "deploy.yaml";
 | |
| 
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UsePaddleBackend();
 | |
|   auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
|   cv::Mat bg = cv::imread(background_file);
 | |
|   fastdeploy::vision::MattingResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   auto vis_im = fastdeploy::vision::VisMatting(im_bak, res);
 | |
|   auto vis_im_with_bg =
 | |
|       fastdeploy::vision::Visualize::SwapBackgroundMatting(im_bak, bg, res);
 | |
|   cv::imwrite("visualized_result.jpg", vis_im_with_bg);
 | |
|   cv::imwrite("visualized_result_fg.jpg", vis_im);
 | |
|   std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
 | |
|                "and ./visualized_result_fg.jpg"
 | |
|             << std::endl;
 | |
| }
 | |
| 
 | |
| void TrtInfer(const std::string& model_dir, const std::string& image_file,
 | |
|               const std::string& background_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "deploy.yaml";
 | |
| 
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UseTrtBackend();
 | |
|   option.SetTrtInputShape("img", {1, 3, 512, 512});
 | |
|   auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
|   cv::Mat bg = cv::imread(background_file);
 | |
|   fastdeploy::vision::MattingResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   auto vis_im = fastdeploy::vision::VisMatting(im_bak, res);
 | |
|   auto vis_im_with_bg =
 | |
|       fastdeploy::vision::Visualize::SwapBackgroundMatting(im_bak, bg, res);
 | |
|   cv::imwrite("visualized_result.jpg", vis_im_with_bg);
 | |
|   cv::imwrite("visualized_result_fg.jpg", vis_im);
 | |
|   std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
 | |
|                "and ./visualized_result_fg.jpg"
 | |
|             << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 5) {
 | |
|     std::cout
 | |
|         << "Usage: infer_demo path/to/model_dir path/to/image run_option, "
 | |
|            "e.g ./infer_model ./PP-Matting-512 ./test.jpg ./test_bg.jpg 0"
 | |
|         << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with gpu and use tensorrt backend."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
|   if (std::atoi(argv[4]) == 0) {
 | |
|     CpuInfer(argv[1], argv[2], argv[3]);
 | |
|   } else if (std::atoi(argv[4]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2], argv[3]);
 | |
|   } else if (std::atoi(argv[4]) == 2) {
 | |
|     TrtInfer(argv[1], argv[2], argv[3]);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |