mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	 30bb233db8
			
		
	
	30bb233db8
	
	
	
		
			
			* [feature][cmake] enable build fastdeploy with examples * [feature][cmake] enable build fastdeploy with examples * [feature][vision] Add YOLOv7 End2End model with ORT NMS * [docs] update yolov7end2end_ort docs update yolov7end2end_ort docs * [docs] update yolov7end2end_ort examples docs update yolov7end2end_ort examples docs * [docs] update yolov7end2end_ort examples docs Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| void CpuInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto model = fastdeploy::vision::detection::YOLOv7End2EndORT(model_file);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void GpuInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   auto model =
 | |
|       fastdeploy::vision::detection::YOLOv7End2EndORT(model_file, "", option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void TrtInfer(const std::string& model_file, const std::string& image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UseTrtBackend();
 | |
|   option.SetTrtInputShape("images", {1, 3, 640, 640});
 | |
|   auto model =
 | |
|       fastdeploy::vision::detection::YOLOv7End2EndORT(model_file, "", option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
|   auto im_bak = im.clone();
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(&im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
|   auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
 | |
|                  "e.g ./infer_model ./yolov7-end2end-ort.onnx ./test.jpeg 0"
 | |
|               << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with gpu and use tensorrt backend."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   if (std::atoi(argv[3]) == 0) {
 | |
|     CpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 2) {
 | |
|     TrtInfer(argv[1], argv[2]);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |