mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-17 22:21:48 +08:00

* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link * Improve PPOCR comments * Add English doc for quantization * Fix PPOCR rec model bug * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add Ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Support DirectML in onnxruntime * Support onnxruntime DirectML * Support onnxruntime DirectML * Support onnxruntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Remove DirectML vision model example * Imporve OnnxRuntime DirectML * Imporve OnnxRuntime DirectML * fix opencv cmake in Windows * recheck codestyle
PaddleSeg高性能全场景模型部署方案—FastDeploy
FastDeploy介绍
FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具,使用FastDeploy可以简单高效的在10+款硬件上对PaddleSeg模型进行快速部署
支持如下的硬件部署
硬件支持列表 | |||
---|---|---|---|
NVIDIA GPU | X86 CPU | 飞腾CPU | ARM CPU |
Intel GPU(独立显卡/集成显卡) | 昆仑 | 昇腾 | 瑞芯微 |
晶晨 | 算能 |
更多部署方式
常见问题
遇到问题可查看常见问题集合文档或搜索FastDeploy issues,链接如下:
若以上方式都无法解决问题,欢迎给FastDeploy提交新的issue