Files
FastDeploy/examples/vision/detection/paddledetection/csharp/infer_ppyoloe.cs
chenjian f43ff32752 [C# api] add c sharp api for fastdeploy (#1246)
* add c sharp api for fastdeploy

* update accroding to c apis

* add cmakelist for c sharp api

* add cmakelists for c sharp

* fix cmakelists

* fix cmakelists

* add c sharp api for fastdeploy

* add ppyoloe demo

* add ppyoloe demo

* modify demo namespace code

* add readme

* fix format

* format code

* fix doc

---------

Co-authored-by: heliqi <1101791222@qq.com>
2023-02-15 14:27:31 +08:00

57 lines
2.2 KiB
C#

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.IO;
using System.Runtime.InteropServices;
using OpenCvSharp;
using fastdeploy;
namespace Test
{
public class TestPPYOLOE
{
public static void Main(string[] args)
{
if (args.Length < 3) {
Console.WriteLine(
"Usage: infer_demo path/to/model_dir path/to/image run_option, " +
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
);
Console.WriteLine( "The data type of run_option is int, 0: run with cpu; 1: run with gpu");
return;
}
string model_dir = args[0];
string image_path = args[1];
string model_file = model_dir + "\\" + "model.pdmodel";
string params_file = model_dir + "\\" + "model.pdiparams";
string config_file = model_dir + "\\" + "infer_cfg.yml";
RuntimeOption runtimeoption = new RuntimeOption();
int device_option = Int32.Parse(args[2]);
if(device_option==0){
runtimeoption.UseCpu();
}else{
runtimeoption.UseGpu();
}
vision.detection.PPYOLOE model = new vision.detection.PPYOLOE(model_file, params_file, config_file, runtimeoption, ModelFormat.PADDLE);
Mat image = Cv2.ImRead(image_path);
vision.DetectionResult res = model.Predict(image);
Mat res_img = vision.Visualize.VisDetection(image, res, 0, 1, 0.5f);
Cv2.ImShow("result.png", res_img);
Cv2.WaitKey(0);
}
}
}